網站首頁 編程語言 正文
排序的概念及其運用
排序的概念
排序:所謂排序,就是使一串記錄,按照其中的某個或某些關鍵字的大小,遞增或遞減的排列起來的操作。
穩定性:假定在待排序的記錄序列中,存在多個具有相同的關鍵字的記錄,若經過排序,這些記錄的相對次
序保持不變,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,則稱這種排
序算法是穩定的;否則稱為不穩定的。 內部排序:數據元素全部放在內存中的排序。
外部排序:數據元素太多不能同時放在內存中,根據排序過程的要求不能在內外存之間移動數據的排序。
排序運用
高校排名:
接下來,我會一一介紹幾種常見的排序算法
插入排序
直接插入排序
直接插入排序是一種簡單的插入排序法
基本思想: 把待排序的記錄按其關鍵碼值的大小逐個插入到一個已經排好序的有序序列中,直到所有的記錄插入完為止,得到一個新的有序序列
代碼的實現
//直接插入排序 void InsertSort(int* a, int n) { assert(a);//傳入數組不為空指針 int i; for (i = 0; i < n - 1; i++) { int end = i; int x = a[end + 1]; while (end >= 0) { //升序 if (a[end] >x) { a[end + 1] = a[end]; end--; } else { break; } } a[end + 1] = x; } }
希爾排序
解析
- 希爾排序在直接排序之前,進行預排列,將某些極端數據更快的排列到數列前面,構成一個接近排列好的序列,最后再進行一次直接插入排序
- 預排列的原理也是插入排列,只不過這里的將數組分成了gap組,分別對每一個小組進行插入排序
// 希爾排序 void ShellSort(int* a, int n) { int gap = n; while (gap > 1) { gap /= 2; for (int i = 0; i < n - gap; i++) { int end = i; int x = a[end + gap]; while (end >= 0) { if (a[end] > x) { a[end + gap] = a[end]; end-=gap; } else break; } a[end + gap] = x; } } }
當gap > 1時都是預排序,目的是讓數組更接近于有序。當gap == 1時,數組已經接近有序的了,這樣就會很快。這樣整體而言,可以達到優化的效果。我們實現后可以進行性能測試的對比
選擇排序
直接選擇排序
解析
每一次遍歷待排序的數據元素從中選出最小(或最大)的一個元素,存放在序列的起始(或者末尾)位置,直到全部待排序的數據元素排完
代碼的實現
// 選擇排序 void SelectSort(int* a, int n) { int begin = 0, end = n - 1;//記錄下標 while (begin < end) { int mini = begin; for (int i = begin; i <= end; i++) { //遍歷找到最小數據并記錄下標 if (a[i] < a[mini]) mini = i; } Swap(&a[begin], &a[mini]);//交換 begin++;//縮小范圍 } }
總結
時間復雜度:O(N^2)
空間復雜度:O(1)
穩定性:不穩定
不推薦使用
堆排序
堆排序是指利用堆(數據結構)進行選擇數據的一種排序算法
基礎思想:
- 原則:
先將原數組建成堆,需要注意的是排升序要建大堆,排降序建小堆
注:以大堆為例
- 建堆:
一個根節點與子節點數據如果不符合大堆結構,那么則對根節點數據進行向下調整,而向下調整的前提是左右子樹也符合大堆結構,所以從堆尾數據的根節點位置開始向下調整建大堆
- 排序:
大堆堆頂數據一定是待排數據中最大的,將堆頂數據與堆尾數據交換,交換后將除堆尾數據看成新堆,對現堆頂數據進行向下調整成大堆,以此循環直至排列完畢
- 向下調整:
找到子節點中的較大數據節點比較,如果父節點數據比大子節點小則交換,直到不符合則停止向下交換,此時再次構成了一個大堆結構.
代碼的實現
void Adjustdown(int* a, int n,int parent) { int child = parent * 2 + 1; while (child < n) { //找到數據大的子結點 if (child + 1 < n && a[child + 1] > a[child]) { child++; } //父節點數據小于子節點就交換 if (a[parent] < a[child]) { Swap(&a[parent], &a[child]); //更新下標 parent = child; child = parent * 2 + 1; } else//否則向下調整完畢 break; } } // 堆排序(升序)建大堆 void HeapSort(int* a, int n) { int i; //建大堆 for (i = (n - 1 - 1) / 2; i >= 0; i--) { Adjustdown(a, n, i); } //交換調整 for (i = n - 1; i >= 0; i--) { Swap(&a[0], &a[i]);//與當前堆尾數據交換 Adjustdown(a, i, 0);//對交換后堆頂數據進行向下調整 } }
總結:
堆排序使用堆來選數,效率就高了很多。
時間復雜度:O(N*logN)
空間復雜度:O(1)
穩定性:不穩定
交換排序之冒泡排序
冒泡排序
每次遍歷數組,對相鄰數據進行比較,不符合排序要求則交換
代碼的實現
// 冒泡排序 void BubbleSort(int* a, int n) { int i, j; for (i = 0; i < n - 1; i++)//趟數 { for (j = 0; j < n - 1 - i; j++)//比較次數 { if (a[j] > a[j + 1])//滿足條件 Swap(&a[j], &a[j + 1]);//交換 } } }
總結
排序的第一篇就講到這里了,下一篇還會講快速排序和歸并排序,希望大家多多支持!!
原文鏈接:https://blog.csdn.net/yin_ming_hui/article/details/123744576
相關推薦
- 2023-01-20 Python-with?open()?as?f的用法及說明_python
- 2022-10-21 Android基于Mapbox?V10?繪制LineGradient軌跡_Android
- 2022-10-29 python的strip、lstrip、rstrip函數的用法和實例
- 2023-10-30 springboot 整合 p6spy 插件打印sql執行時間以及真實sql內容
- 2023-01-10 Oracle數據庫如何獲取當前自然周,當前周的起始和結束日期_oracle
- 2022-10-13 云服務器Windows?Server2012配置FTP服務器詳細圖文教程_FTP服務器
- 2022-07-24 C++超詳細講解樹與二叉樹_C 語言
- 2022-04-04 webpack-loaders: postcss
- 最近更新
-
- window11 系統安裝 yarn
- 超詳細win安裝深度學習環境2025年最新版(
- Linux 中運行的top命令 怎么退出?
- MySQL 中decimal 的用法? 存儲小
- get 、set 、toString 方法的使
- @Resource和 @Autowired注解
- Java基礎操作-- 運算符,流程控制 Flo
- 1. Int 和Integer 的區別,Jav
- spring @retryable不生效的一種
- Spring Security之認證信息的處理
- Spring Security之認證過濾器
- Spring Security概述快速入門
- Spring Security之配置體系
- 【SpringBoot】SpringCache
- Spring Security之基于方法配置權
- redisson分布式鎖中waittime的設
- maven:解決release錯誤:Artif
- restTemplate使用總結
- Spring Security之安全異常處理
- MybatisPlus優雅實現加密?
- Spring ioc容器與Bean的生命周期。
- 【探索SpringCloud】服務發現-Nac
- Spring Security之基于HttpR
- Redis 底層數據結構-簡單動態字符串(SD
- arthas操作spring被代理目標對象命令
- Spring中的單例模式應用詳解
- 聊聊消息隊列,發送消息的4種方式
- bootspring第三方資源配置管理
- GIT同步修改后的遠程分支