網站首頁 編程語言 正文
1.讀取csv數據做dbscan分析
讀取csv文件中相應的列,然后進行轉化,處理為本算法需要的格式,然后進行dbscan運算,目前公開的代碼也比較多,本文根據公開代碼修改,
具體代碼如下:
from sklearn import datasets
import numpy as np
import random
import matplotlib.pyplot as plt
import time
import copy
import pandas as pd
# from sklearn.datasets import load_iris
?
def find_neighbor(j, x, eps):
? ? N = list()
? ? for i in range(x.shape[0]):
? ? ? ? temp = np.sqrt(np.sum(np.square(x[j] - x[i]))) ?# 計算歐式距離
? ? ? ? if temp <= eps:
? ? ? ? ? ? N.append(i)
? ? return set(N)
?
?
def DBSCAN(X, eps, min_Pts):
? ? k = -1
? ? neighbor_list = [] ?# 用來保存每個數據的鄰域
? ? omega_list = [] ?# 核心對象集合
? ? gama = set([x for x in range(len(X))]) ?# 初始時將所有點標記為未訪問
? ? cluster = [-1 for _ in range(len(X))] ?# 聚類
? ? for i in range(len(X)):
? ? ? ? neighbor_list.append(find_neighbor(i, X, eps))
? ? ? ? if len(neighbor_list[-1]) >= min_Pts:
? ? ? ? ? ? omega_list.append(i) ?# 將樣本加入核心對象集合
? ? omega_list = set(omega_list) ?# 轉化為集合便于操作
? ? while len(omega_list) > 0:
? ? ? ? gama_old = copy.deepcopy(gama)
? ? ? ? j = random.choice(list(omega_list)) ?# 隨機選取一個核心對象
? ? ? ? k = k + 1
? ? ? ? Q = list()
? ? ? ? Q.append(j)
? ? ? ? gama.remove(j)
? ? ? ? while len(Q) > 0:
? ? ? ? ? ? q = Q[0]
? ? ? ? ? ? Q.remove(q)
? ? ? ? ? ? if len(neighbor_list[q]) >= min_Pts:
? ? ? ? ? ? ? ? delta = neighbor_list[q] & gama
? ? ? ? ? ? ? ? deltalist = list(delta)
? ? ? ? ? ? ? ? for i in range(len(delta)):
? ? ? ? ? ? ? ? ? ? Q.append(deltalist[i])
? ? ? ? ? ? ? ? ? ? gama = gama - delta
? ? ? ? Ck = gama_old - gama
? ? ? ? Cklist = list(Ck)
? ? ? ? for i in range(len(Ck)):
? ? ? ? ? ? cluster[Cklist[i]] = k
? ? ? ? omega_list = omega_list - Ck
? ? return cluster
?
# X = load_iris().data
data = pd.read_csv("testdata.csv")
x,y=data['Time (sec)'],data['Height (m HAE)']
print(type(x))
n=len(x)
x=np.array(x)
x=x.reshape(n,1)
y=np.array(y)
y=y.reshape(n,1)
X = np.hstack((x, y))
cluster_std=[[.1]], random_state=9)
?
eps = 0.08
min_Pts = 5
begin = time.time()
C = DBSCAN(X, eps, min_Pts)
end = time.time()
plt.figure()
plt.scatter(X[:, 0], X[:, 1], c=C)
plt.show()
2.輸出結果顯示
修改參數顯示:
eps = 0.8
min_Pts = 5
3.計算效率
采用少量數據計算的時候效率問題不明顯,隨著數據量增大,計算效率問題就變得尤為明顯,難以滿足大量數據的計算需求了,后期將想辦法優化計算方法或者收集C++代碼進行優化了。
原文鏈接:https://blog.csdn.net/soderayer/article/details/124089170
相關推薦
- 2022-09-04 python?matplotlib庫繪圖實戰之繪制散點圖_python
- 2022-07-11 pandas如何計算同比環比增長_python
- 2022-09-15 python自動化測試中APScheduler?Flask的應用示例_python
- 2022-11-25 Python中日期和時間的用法超強總結_python
- 2021-12-06 Gin框架之參數綁定的實現_Golang
- 2022-09-25 2022react高頻面試題有哪些
- 2022-11-19 Kotlin協程之Flow異常示例處理_Android
- 2022-12-14 正則表達式(?=)正向先行斷言實戰案例_正則表達式
- 最近更新
-
- window11 系統安裝 yarn
- 超詳細win安裝深度學習環境2025年最新版(
- Linux 中運行的top命令 怎么退出?
- MySQL 中decimal 的用法? 存儲小
- get 、set 、toString 方法的使
- @Resource和 @Autowired注解
- Java基礎操作-- 運算符,流程控制 Flo
- 1. Int 和Integer 的區別,Jav
- spring @retryable不生效的一種
- Spring Security之認證信息的處理
- Spring Security之認證過濾器
- Spring Security概述快速入門
- Spring Security之配置體系
- 【SpringBoot】SpringCache
- Spring Security之基于方法配置權
- redisson分布式鎖中waittime的設
- maven:解決release錯誤:Artif
- restTemplate使用總結
- Spring Security之安全異常處理
- MybatisPlus優雅實現加密?
- Spring ioc容器與Bean的生命周期。
- 【探索SpringCloud】服務發現-Nac
- Spring Security之基于HttpR
- Redis 底層數據結構-簡單動態字符串(SD
- arthas操作spring被代理目標對象命令
- Spring中的單例模式應用詳解
- 聊聊消息隊列,發送消息的4種方式
- bootspring第三方資源配置管理
- GIT同步修改后的遠程分支