網站首頁 編程語言 正文
Keras中構建RNN的重要函數
1、SimpleRNN
SimpleRNN用于在Keras中構建普通的簡單RNN層,在使用前需要import。
from keras.layers import SimpleRNN
在實際使用時,需要用到幾個參數。
model.add(
SimpleRNN(
batch_input_shape = (BATCH_SIZE,TIME_STEPS,INPUT_SIZE),
output_dim = CELL_SIZE,
)
)
其中,batch_input_shape代表RNN輸入數據的shape,shape的內容分別是每一次訓練使用的BATCH,TIME_STEPS表示這個RNN按順序輸入的時間點的數量,INPUT_SIZE表示每一個時間點的輸入數據大小。
CELL_SIZE代表訓練每一個時間點的神經元數量。
2、model.train_on_batch
與之前的訓練CNN網絡和普通分類網絡不同,RNN網絡在建立時就規定了batch_input_shape,所以訓練的時候也需要一定量一定量的傳入訓練數據。
model.train_on_batch在使用前需要對數據進行處理。獲取指定BATCH大小的訓練集。
X_batch = X_train[index_start:index_start + BATCH_SIZE,:,:]
Y_batch = Y_train[index_start:index_start + BATCH_SIZE,:]
index_start += BATCH_SIZE
具體訓練過程如下:
for i in range(500):
X_batch = X_train[index_start:index_start + BATCH_SIZE,:,:]
Y_batch = Y_train[index_start:index_start + BATCH_SIZE,:]
index_start += BATCH_SIZE
cost = model.train_on_batch(X_batch,Y_batch)
if index_start >= X_train.shape[0]:
index_start = 0
if i%100 == 0:
## acc
cost,accuracy = model.evaluate(X_test,Y_test,batch_size=50)
## W,b = model.layers[0].get_weights()
print("accuracy:",accuracy)
x = X_test[1].reshape(1,28,28)
全部代碼
這是一個RNN神經網絡的例子,用于識別手寫體。
import numpy as np
from keras.models import Sequential
from keras.layers import SimpleRNN,Activation,Dense ## 全連接層
from keras.datasets import mnist
from keras.utils import np_utils
from keras.optimizers import Adam
TIME_STEPS = 28
INPUT_SIZE = 28
BATCH_SIZE = 50
index_start = 0
OUTPUT_SIZE = 10
CELL_SIZE = 75
LR = 1e-3
(X_train,Y_train),(X_test,Y_test) = mnist.load_data()
X_train = X_train.reshape(-1,28,28)/255
X_test = X_test.reshape(-1,28,28)/255
Y_train = np_utils.to_categorical(Y_train,num_classes= 10)
Y_test = np_utils.to_categorical(Y_test,num_classes= 10)
model = Sequential()
# conv1
model.add(
SimpleRNN(
batch_input_shape = (BATCH_SIZE,TIME_STEPS,INPUT_SIZE),
output_dim = CELL_SIZE,
)
)
model.add(Dense(OUTPUT_SIZE))
model.add(Activation("softmax"))
adam = Adam(LR)
## compile
model.compile(loss = 'categorical_crossentropy',optimizer = adam,metrics = ['accuracy'])
## tarin
for i in range(500):
X_batch = X_train[index_start:index_start + BATCH_SIZE,:,:]
Y_batch = Y_train[index_start:index_start + BATCH_SIZE,:]
index_start += BATCH_SIZE
cost = model.train_on_batch(X_batch,Y_batch)
if index_start >= X_train.shape[0]:
index_start = 0
if i%100 == 0:
## acc
cost,accuracy = model.evaluate(X_test,Y_test,batch_size=50)
## W,b = model.layers[0].get_weights()
print("accuracy:",accuracy)
實驗結果為:
10000/10000 [==============================] - 1s 147us/step
accuracy: 0.09329999938607215
…………………………
10000/10000 [==============================] - 1s 112us/step
accuracy: 0.9395000022649765
10000/10000 [==============================] - 1s 109us/step
accuracy: 0.9422999995946885
10000/10000 [==============================] - 1s 114us/step
accuracy: 0.9534000000357628
10000/10000 [==============================] - 1s 112us/step
accuracy: 0.9566000008583069
10000/10000 [==============================] - 1s 113us/step
accuracy: 0.950799999833107
10000/10000 [==============================] - 1s 116us/step
10000/10000 [==============================] - 1s 112us/step
accuracy: 0.9474999988079071
10000/10000 [==============================] - 1s 111us/step
accuracy: 0.9515000003576278
10000/10000 [==============================] - 1s 114us/step
accuracy: 0.9288999977707862
10000/10000 [==============================] - 1s 115us/step
accuracy: 0.9487999993562698
原文鏈接:https://blog.csdn.net/weixin_44791964/article/details/101609556
相關推薦
- 2023-06-16 GO語言中通道和sync包的使用教程分享_Golang
- 2023-02-25 Golang嵌入資源文件實現步驟詳解_Golang
- 2024-03-03 ElementUi中el-cascader表單驗證問題
- 2023-09-17 org.apache.ibaorg.apache.ibatis.btis.binding.Bindi
- 2024-01-15 spring-boot jpa 實現攔截器 StatementInspector
- 2022-05-31 ASP.NET?Core使用NLog記錄日志_實用技巧
- 2022-09-19 用正則表達式匹配字符串中漢字及中文標點符號_正則表達式
- 2022-06-24 windows服務器修改遠程登錄的端口以及防火墻配置_win服務器
- 最近更新
-
- window11 系統安裝 yarn
- 超詳細win安裝深度學習環境2025年最新版(
- Linux 中運行的top命令 怎么退出?
- MySQL 中decimal 的用法? 存儲小
- get 、set 、toString 方法的使
- @Resource和 @Autowired注解
- Java基礎操作-- 運算符,流程控制 Flo
- 1. Int 和Integer 的區別,Jav
- spring @retryable不生效的一種
- Spring Security之認證信息的處理
- Spring Security之認證過濾器
- Spring Security概述快速入門
- Spring Security之配置體系
- 【SpringBoot】SpringCache
- Spring Security之基于方法配置權
- redisson分布式鎖中waittime的設
- maven:解決release錯誤:Artif
- restTemplate使用總結
- Spring Security之安全異常處理
- MybatisPlus優雅實現加密?
- Spring ioc容器與Bean的生命周期。
- 【探索SpringCloud】服務發現-Nac
- Spring Security之基于HttpR
- Redis 底層數據結構-簡單動態字符串(SD
- arthas操作spring被代理目標對象命令
- Spring中的單例模式應用詳解
- 聊聊消息隊列,發送消息的4種方式
- bootspring第三方資源配置管理
- GIT同步修改后的遠程分支