網站首頁 編程語言 正文
學習神經網絡已經有一段時間,從普通的BP神經網絡到LSTM長短期記憶網絡都有一定的了解,但是從未系統的把整個神經網絡的結構記錄下來,我相信這些小記錄可以幫助我更加深刻的理解神經網絡。
簡介
卷積神經網絡(Convolutional Neural Networks, CNN)是一類包含卷積計算且具有深度結構的前饋神經網絡(Feedforward Neural Networks),是深度學習(deep learning)的代表算法之一。
其主要結構分為輸入層、隱含層、輸出層。
在tensorboard中,其結構如圖所示:
對于卷積神經網絡而言,其輸入層、輸出層與平常的卷積神經網絡無異。
但其隱含層可以分為三個部分,分別是卷積層(對輸入數據進行特征提取)、池化層(特征選擇和信息過濾)、全連接層(等價于傳統前饋神經網絡中的隱含層)。
隱含層介紹
1、卷積層
卷積將輸入圖像放進一組卷積濾波器,每個濾波器激活圖像中的某些特征。
假設一副黑白圖像為5*5的大小,像這樣:
利用如下卷積器進行卷積:
卷積結果為:
卷積過程可以提取特征,卷積神經網絡是根據特征來完成分類的。
在tensorflow中,卷積層的重要函數是:
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)
其中:
1、input是輸入量,shape是[batch, height, width, channels]。;
2、filter是使用的卷積核;
3、strides是步長,其格式[1,step,step,1],step指的是在圖像卷積的每一維的步長;
4、padding:string類型的量,只能是"SAME","VALID"其中之一,SAME表示卷積前后圖像面積不變。
2、池化層
池化層用于在卷積層進行特征提取后,輸出的特征圖會被傳遞至池化層進行特征選擇和信息過濾。
常見的池化是最大池化,最大池化指的是取出這些被卷積后的數據的最大值,就是取出其最大特征。
假設其池化窗口為2X2,步長為2。
原圖像為:
池化后為:
在tensorflow中,池化層的重要函數是:
tf.nn.max_pool(value, ksize, strides, padding, data_format, name)
1、value:池化層的輸入,一般池化層接在卷積層后面,shape是[batch, height, width, channels]。
2、ksize:池化窗口的大小,取一個四維向量,一般是[1, in_height, in_width, 1]。
3、strides:和卷積類似,窗口在每一個維度上滑動的步長,也是[1, stride,stride, 1]。
4、padding:和卷積類似,可以取’VALID’ 或者’SAME’。
這是tensorboard中卷積層和池化層的連接結構:
3、全連接層
全連接層與普通神經網絡的結構相同,如圖所示:
具體實現代碼
卷積層、池化層與全連接層實現代碼
def conv2d(x,W,step,pad): #用于進行卷積,x為輸入值,w為卷積核
return tf.nn.conv2d(x,W,strides = [1,step,step,1],padding = pad)
def max_pool_2X2(x,step,pad): #用于池化,x為輸入值,step為步數
return tf.nn.max_pool(x,ksize = [1,2,2,1],strides= [1,step,step,1],padding = pad)
def weight_variable(shape): #用于獲得W
initial = tf.truncated_normal(shape,stddev = 0.1) #從截斷的正態分布中輸出隨機值
return tf.Variable(initial)
def bias_variable(shape): #獲得bias
initial = tf.constant(0.1,shape=shape) #生成普通值
return tf.Variable(initial)
def add_layer(inputs,in_size,out_size,n_layer,activation_function = None,keep_prob = 1):
#用于添加全連接層
layer_name = 'layer_%s'%n_layer
with tf.name_scope(layer_name):
with tf.name_scope("Weights"):
Weights = tf.Variable(tf.truncated_normal([in_size,out_size],stddev = 0.1),name = "Weights")
tf.summary.histogram(layer_name+"/weights",Weights)
with tf.name_scope("biases"):
biases = tf.Variable(tf.zeros([1,out_size]) + 0.1,name = "biases")
tf.summary.histogram(layer_name+"/biases",biases)
with tf.name_scope("Wx_plus_b"):
Wx_plus_b = tf.matmul(inputs,Weights) + biases
tf.summary.histogram(layer_name+"/Wx_plus_b",Wx_plus_b)
if activation_function == None :
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
print(activation_function)
outputs = tf.nn.dropout(outputs,keep_prob)
tf.summary.histogram(layer_name+"/outputs",outputs)
return outputs
def add_cnn_layer(inputs, in_z_dim, out_z_dim, n_layer, conv_step = 1, pool_step = 2, padding = "SAME"):
#用于生成卷積層和池化層
layer_name = 'layer_%s'%n_layer
with tf.name_scope(layer_name):
with tf.name_scope("Weights"):
W_conv = weight_variable([5,5,in_z_dim,out_z_dim])
with tf.name_scope("biases"):
b_conv = bias_variable([out_z_dim])
with tf.name_scope("conv"):
#卷積層
h_conv = tf.nn.relu(conv2d(inputs, W_conv, conv_step, padding)+b_conv)
with tf.name_scope("pooling"):
#池化層
h_pool = max_pool_2X2(h_conv, pool_step, padding)
return h_pool
全部代碼
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data",one_hot = "true")
def conv2d(x,W,step,pad):
return tf.nn.conv2d(x,W,strides = [1,step,step,1],padding = pad)
def max_pool_2X2(x,step,pad):
return tf.nn.max_pool(x,ksize = [1,2,2,1],strides= [1,step,step,1],padding = pad)
def weight_variable(shape):
initial = tf.truncated_normal(shape,stddev = 0.1) #從截斷的正態分布中輸出隨機值
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1,shape=shape) #生成普通值
return tf.Variable(initial)
def add_layer(inputs,in_size,out_size,n_layer,activation_function = None,keep_prob = 1):
layer_name = 'layer_%s'%n_layer
with tf.name_scope(layer_name):
with tf.name_scope("Weights"):
Weights = tf.Variable(tf.truncated_normal([in_size,out_size],stddev = 0.1),name = "Weights")
tf.summary.histogram(layer_name+"/weights",Weights)
with tf.name_scope("biases"):
biases = tf.Variable(tf.zeros([1,out_size]) + 0.1,name = "biases")
tf.summary.histogram(layer_name+"/biases",biases)
with tf.name_scope("Wx_plus_b"):
Wx_plus_b = tf.matmul(inputs,Weights) + biases
tf.summary.histogram(layer_name+"/Wx_plus_b",Wx_plus_b)
if activation_function == None :
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
print(activation_function)
outputs = tf.nn.dropout(outputs,keep_prob)
tf.summary.histogram(layer_name+"/outputs",outputs)
return outputs
def add_cnn_layer(inputs, in_z_dim, out_z_dim, n_layer, conv_step = 1, pool_step = 2, padding = "SAME"):
layer_name = 'layer_%s'%n_layer
with tf.name_scope(layer_name):
with tf.name_scope("Weights"):
W_conv = weight_variable([5,5,in_z_dim,out_z_dim])
with tf.name_scope("biases"):
b_conv = bias_variable([out_z_dim])
with tf.name_scope("conv"):
h_conv = tf.nn.relu(conv2d(inputs, W_conv, conv_step, padding)+b_conv)
with tf.name_scope("pooling"):
h_pool = max_pool_2X2(h_conv, pool_step, padding)
return h_pool
def compute_accuracy(x_data,y_data):
global prediction
y_pre = sess.run(prediction,feed_dict={xs:x_data,keep_prob:1})
correct_prediction = tf.equal(tf.arg_max(y_data,1),tf.arg_max(y_pre,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
result = sess.run(accuracy,feed_dict = {xs:batch_xs,ys:batch_ys,keep_prob:1})
return result
keep_prob = tf.placeholder(tf.float32)
xs = tf.placeholder(tf.float32,[None,784])
ys = tf.placeholder(tf.float32,[None,10])
x_image = tf.reshape(xs,[-1,28,28,1])
h_pool1 = add_cnn_layer(x_image, in_z_dim = 1, out_z_dim = 32, n_layer = "cnn1",)
h_pool2 = add_cnn_layer(h_pool1, in_z_dim = 32, out_z_dim = 64, n_layer = "cnn2",)
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
h_fc1_drop = add_layer(h_pool2_flat, 7*7*64, 1024, "layer1", activation_function = tf.nn.relu, keep_prob = keep_prob)
prediction = add_layer(h_fc1_drop, 1024, 10, "layer2", activation_function = tf.nn.softmax, keep_prob = 1)
with tf.name_scope("loss"):
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=ys,logits = prediction),name = 'loss')
tf.summary.scalar("loss",loss)
train = tf.train.AdamOptimizer(1e-4).minimize(loss)
init = tf.initialize_all_variables()
merged = tf.summary.merge_all()
with tf.Session() as sess:
sess.run(init)
write = tf.summary.FileWriter("logs/",sess.graph)
for i in range(5000):
batch_xs,batch_ys = mnist.train.next_batch(100)
sess.run(train,feed_dict = {xs:batch_xs,ys:batch_ys,keep_prob:0.5})
if i % 100 == 0:
print(compute_accuracy(mnist.test.images,mnist.test.labels))
原文鏈接:https://blog.csdn.net/weixin_44791964/article/details/97298887
相關推薦
- 2022-09-12 Go1.18新特性工作區模糊測試及泛型的使用詳解_Golang
- 2023-03-20 一文詳解pygame.sprite的精靈碰撞_python
- 2022-10-22 關于分布式鎖的三種實現方式_Redis
- 2022-08-03 C#記一次http協議multipart/form-data的boundary問題_C#教程
- 2022-11-06 Nginx如何配置多個服務域名解析共用80端口詳解_nginx
- 2022-04-01 17條提高工作效率的Python技巧分享_python
- 2022-09-18 Python動態配置管理Dynaconf的實現示例詳解_python
- 2022-11-19 React實現多個場景下鼠標跟隨提示框詳解_React
- 最近更新
-
- window11 系統安裝 yarn
- 超詳細win安裝深度學習環境2025年最新版(
- Linux 中運行的top命令 怎么退出?
- MySQL 中decimal 的用法? 存儲小
- get 、set 、toString 方法的使
- @Resource和 @Autowired注解
- Java基礎操作-- 運算符,流程控制 Flo
- 1. Int 和Integer 的區別,Jav
- spring @retryable不生效的一種
- Spring Security之認證信息的處理
- Spring Security之認證過濾器
- Spring Security概述快速入門
- Spring Security之配置體系
- 【SpringBoot】SpringCache
- Spring Security之基于方法配置權
- redisson分布式鎖中waittime的設
- maven:解決release錯誤:Artif
- restTemplate使用總結
- Spring Security之安全異常處理
- MybatisPlus優雅實現加密?
- Spring ioc容器與Bean的生命周期。
- 【探索SpringCloud】服務發現-Nac
- Spring Security之基于HttpR
- Redis 底層數據結構-簡單動態字符串(SD
- arthas操作spring被代理目標對象命令
- Spring中的單例模式應用詳解
- 聊聊消息隊列,發送消息的4種方式
- bootspring第三方資源配置管理
- GIT同步修改后的遠程分支