網站首頁 編程語言 正文
1.Series介紹
Pandas模塊的數據結構主要有兩種:1.Series 2.DataFrame
Series 是一維數組,基于Numpy的ndarray 結構
Series([data, index, dtype, name, copy, …])
# One-dimensional ndarray with axis labels (including time series).
2.Series創建
import Pandas as pd
import numpy as np
1.pd.Series([list],index=[list])
參數為list ,index為可選參數,若不填寫則默認為index從0開始
obj = pd.Series([4, 7, -5, 3, 7, np.nan])
obj
輸出結果為:
0 ? ?4.0
1 ? ?7.0
2 ? -5.0
3 ? ?3.0
4 ? ?7.0
5 ? ?NaN
dtype: float64
2.pd.Series(np.arange())
arr = np.arange(6)
s = pd.Series(arr)
s
輸出結果為:
0 ? ?0
1 ? ?1
2 ? ?2
3 ? ?3
4 ? ?4
5 ? ?5
dtype: int32
pd.Series({dict})
d = {'a':10,'b':20,'c':30,'d':40,'e':50}
s = pd.Series(d)
s
輸出結果為:
a ? ?10
b ? ?20
c ? ?30
d ? ?40
e ? ?50
dtype: int64
可以通過DataFrame中某一行或者某一列創建序列
3 Series基本屬性
- Series.values:Return Series as ndarray or ndarray-like depending on the dtype
obj.values
# array([ 4., 7., -5., 3., 7., nan])
- Series.index:The index (axis labels) of the Series.
obj.index
# RangeIndex(start=0, stop=6, step=1)
- Series.name:Return name of the Series.
4 索引
- Series.loc:Access a group of rows and columns by label(s) or a boolean array.
- Series.iloc:Purely integer-location based indexing for selection by position.
5 計算、描述性統計
?Series.value_counts:Return a Series containing counts of unique values.
index = ['Bob', 'Steve', 'Jeff', 'Ryan', 'Jeff', 'Ryan']
obj = pd.Series([4, 7, -5, 3, 7, np.nan],index = index)
obj.value_counts()
輸出結果為:
?7.0 ? ?2
?3.0 ? ?1
-5.0 ? ?1
?4.0 ? ?1
dtype: int64
6 排序
Series.sort_values
Series.sort_values(self, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')
Parameters:
Parameters | Description |
---|---|
axis | {0 or ‘index’}, default 0,Axis to direct sorting. The value ‘index’ is accepted for compatibility with DataFrame.sort_values. |
ascendin | bool, default True,If True, sort values in ascending order, otherwise descending. |
inplace | bool, default FalseIf True, perform operation in-place. |
kind | {‘quicksort’, ‘mergesort’ or ‘heapsort’}, default ‘quicksort’Choice of sorting algorithm. See also numpy.sort() for more information. ‘mergesort’ is the only stable algorithm. |
na_position | {‘first’ or ‘last’}, default ‘last’,Argument ‘first’ puts NaNs at the beginning, ‘last’ puts NaNs at the end. |
Returns:
Series:Series ordered by values.
obj.sort_values()
輸出結果為:
Jeff ? ?-5.0
Ryan ? ? 3.0
Bob ? ? ?4.0
Steve ? ?7.0
Jeff ? ? 7.0
Ryan ? ? NaN
dtype: float64
- Series.rank
Series.rank(self, axis=0, method='average', numeric_only=None, na_option='keep', ascending=True, pct=False)[source]
Parameters:
Parameters | Description |
---|---|
axis | {0 or ‘index’, 1 or ‘columns’}, default 0Index to direct ranking. |
method | {‘average’, ‘min’, ‘max’, ‘first’, ‘dense’}, default ‘average’How to rank the group of records that have the same value (i.e. ties): average, average rank of the group; min: lowest rank in the group; max: highest rank in the group; first: ranks assigned in order they appear in the array; dense: like ‘min’, but rank always increases by 1,between groups |
numeric_only | bool, optional,For DataFrame objects, rank only numeric columns if set to True. |
na_option | {‘keep’, ‘top’, ‘bottom’}, default ‘keep’, How to rank NaN values:;keep: assign NaN rank to NaN values; top: assign smallest rank to NaN values if ascending; bottom: assign highest rank to NaN values if ascending |
ascending | bool, default True Whether or not the elements should be ranked in ascending order. |
pct | bool, default False Whether or not to display the returned rankings in percentile form. |
Returns:
same type as caller :Return a Series or DataFrame with data ranks as values.
# obj.rank() #從大到小排,NaN還是NaN
obj.rank(method='dense')
# obj.rank(method='min')
# obj.rank(method='max')
# obj.rank(method='first')
# obj.rank(method='dense')
輸出結果為:
Bob ? ? ?3.0
Steve ? ?4.0
Jeff ? ? 1.0
Ryan ? ? 2.0
Jeff ? ? 4.0
Ryan ? ? NaN
dtype: float64
總結
原文鏈接:https://blog.csdn.net/weixin_43868107/article/details/102631717
相關推薦
- 2022-01-18 在使用npm install時遇到的問題 npm ERR! code ERESOLVE
- 2024-03-13 QAobject修改excel字體亂碼問題
- 2021-12-14 如何利用C語言輸出3D立體感心形圖詳解_C 語言
- 2022-07-10 詳解transition 被動動畫
- 2023-04-01 PyTorch之torch.randn()如何創建正態分布隨機數_python
- 2022-07-26 ubuntu18.04+cuda10.2+tensorrt8.4.1.5配置安裝
- 2023-05-31 python常用函數random()函數詳解_python
- 2022-03-14 npm 更改為淘寶鏡像的方法
- 最近更新
-
- window11 系統安裝 yarn
- 超詳細win安裝深度學習環境2025年最新版(
- Linux 中運行的top命令 怎么退出?
- MySQL 中decimal 的用法? 存儲小
- get 、set 、toString 方法的使
- @Resource和 @Autowired注解
- Java基礎操作-- 運算符,流程控制 Flo
- 1. Int 和Integer 的區別,Jav
- spring @retryable不生效的一種
- Spring Security之認證信息的處理
- Spring Security之認證過濾器
- Spring Security概述快速入門
- Spring Security之配置體系
- 【SpringBoot】SpringCache
- Spring Security之基于方法配置權
- redisson分布式鎖中waittime的設
- maven:解決release錯誤:Artif
- restTemplate使用總結
- Spring Security之安全異常處理
- MybatisPlus優雅實現加密?
- Spring ioc容器與Bean的生命周期。
- 【探索SpringCloud】服務發現-Nac
- Spring Security之基于HttpR
- Redis 底層數據結構-簡單動態字符串(SD
- arthas操作spring被代理目標對象命令
- Spring中的單例模式應用詳解
- 聊聊消息隊列,發送消息的4種方式
- bootspring第三方資源配置管理
- GIT同步修改后的遠程分支