網(wǎng)站首頁 編程語言 正文
yolov5中增加了自適應(yīng)錨定框(Auto Learning Bounding Box Anchors),而其他yolo系列是沒有的。
一、默認(rèn)錨定框
Yolov5 中默認(rèn)保存了一些針對 coco數(shù)據(jù)集的預(yù)設(shè)錨定框,在 yolov5 的配置文件*.yaml 中已經(jīng)預(yù)設(shè)了640×640圖像大小下錨定框的尺寸(以 yolov5s.yaml 為例):
# anchors anchors: - [10,13, 16,30, 33,23] # P3/8 - [30,61, 62,45, 59,119] # P4/16 - [116,90, 156,198, 373,326] # P5/32
?anchors參數(shù)共有三行,每行9個數(shù)值;且每一行代表應(yīng)用不同的特征圖;
1、第一行是在最大的特征圖上的錨框
2、第二行是在中間的特征圖上的錨框
3、第三行是在最小的特征圖上的錨框;
在目標(biāo)檢測任務(wù)中,一般希望在大的特征圖上去檢測小目標(biāo),因?yàn)榇筇卣鲌D才含有更多小目標(biāo)信息,因此大特征圖上的anchor數(shù)值通常設(shè)置為小數(shù)值,而小特征圖上數(shù)值設(shè)置為大數(shù)值檢測大的目標(biāo)。
二、自定義錨定框
1、訓(xùn)練時自動計算錨定框
yolov5 中不是只使用默認(rèn)錨定框,在開始訓(xùn)練之前會對數(shù)據(jù)集中標(biāo)注信息進(jìn)行核查,計算此數(shù)據(jù)集標(biāo)注信息針對默認(rèn)錨定框的最佳召回率,當(dāng)最佳召回率大于或等于0.98,則不需要更新錨定框;如果最佳召回率小于0.98,則需要重新計算符合此數(shù)據(jù)集的錨定框。
核查錨定框是否適合要求的函數(shù)在 /utils/autoanchor.py 文件中:
def check_anchors(dataset, model, thr=4.0, imgsz=640):
?其中 thr 是指 數(shù)據(jù)集中標(biāo)注框?qū)捀弑茸畲箝撝担J(rèn)是使用 超參文件 hyp.scratch.yaml 中的 “anchor_t” 參數(shù)值。
核查主要代碼如下:
def metric(k): # compute metric
r = wh[:, None] / k[None]
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
best = x.max(1)[0] # best_x
aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
bpr = (best > 1. / thr).float().mean() # best possible recall
return bpr, aat
bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2))
其中兩個指標(biāo)需要解釋一下(bpr 和 aat):
bpr(best possible recall)?
aat(anchors above threshold)?
?其中 bpr 參數(shù)就是判斷是否需要重新計算錨定框的依據(jù)(是否小于 0.98)。
重新計算符合此數(shù)據(jù)集標(biāo)注框的錨定框,是利用 kmean聚類方法實(shí)現(xiàn)的,代碼在 ?/utils/autoanchor.py 文件中:
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
""" Creates kmeans-evolved anchors from training dataset
Arguments:
path: path to dataset *.yaml, or a loaded dataset
n: number of anchors
img_size: image size used for training
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
gen: generations to evolve anchors using genetic algorithm
verbose: print all results
Return:
k: kmeans evolved anchors
Usage:
from utils.autoanchor import *; _ = kmean_anchors()
"""
thr = 1. / thr
prefix = colorstr('autoanchor: ')
def metric(k, wh): # compute metrics
r = wh[:, None] / k[None]
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
# x = wh_iou(wh, torch.tensor(k)) # iou metric
return x, x.max(1)[0] # x, best_x
def anchor_fitness(k): # mutation fitness
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
return (best * (best > thr).float()).mean() # fitness
def print_results(k):
k = k[np.argsort(k.prod(1))] # sort small to large
x, best = metric(k, wh0)
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
for i, x in enumerate(k):
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
return k
if isinstance(path, str): # *.yaml file
with open(path) as f:
data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict
from utils.datasets import LoadImagesAndLabels
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
else:
dataset = path # dataset
# Get label wh
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
# Filter
i = (wh0 < 3.0).any(1).sum()
if i:
print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
# wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
# Kmeans calculation
print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
s = wh.std(0) # sigmas for whitening
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
k *= s
wh = torch.tensor(wh, dtype=torch.float32) # filtered
wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
k = print_results(k)
# Plot
# k, d = [None] * 20, [None] * 20
# for i in tqdm(range(1, 21)):
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
# ax = ax.ravel()
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
# ax[0].hist(wh[wh[:, 0]<100, 0],400)
# ax[1].hist(wh[wh[:, 1]<100, 1],400)
# fig.savefig('wh.png', dpi=200)
# Evolve
npr = np.random
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
for _ in pbar:
v = np.ones(sh)
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
kg = (k.copy() * v).clip(min=2.0)
fg = anchor_fitness(kg)
if fg > f:
f, k = fg, kg.copy()
pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
if verbose:
print_results(k)
return print_results(k)
對 kmean_anchors()函數(shù)中的參數(shù)做一下簡單解釋(代碼中已經(jīng)有了英文注釋):
- path:包含數(shù)據(jù)集文件路徑等相關(guān)信息的 yaml 文件(比如 coco128.yaml), 或者 數(shù)據(jù)集張量(yolov5 自動計算錨定框時就是用的這種方式,先把數(shù)據(jù)集標(biāo)簽信息讀取再處理)
- n:錨定框的數(shù)量,即有幾組;默認(rèn)值是9
- img_size:圖像尺寸。計算數(shù)據(jù)集樣本標(biāo)簽框的寬高比時,是需要縮放到 img_size 大小后再計算的;默認(rèn)值是640
- thr:數(shù)據(jù)集中標(biāo)注框?qū)捀弑茸畲箝撝担J(rèn)是使用 超參文件 hyp.scratch.yaml 中的 “anchor_t” 參數(shù)值;默認(rèn)值是4.0;自動計算時,會自動根據(jù)你所使用的數(shù)據(jù)集,來計算合適的閾值。
- gen:kmean聚類算法迭代次數(shù),默認(rèn)值是1000
- verbose:是否打印輸出所有計算結(jié)果,默認(rèn)值是true
如果你不想自動計算錨定框,可以在 train.py 中設(shè)置參數(shù)即可:
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
2、訓(xùn)練前手動計算錨定框
如果使用 yolov5 訓(xùn)練效果并不好(排除其他原因,只考慮 “預(yù)設(shè)錨定框” 這個因素), yolov5在核查默認(rèn)錨定框是否符合要求時,計算的最佳召回率大于0.98,沒有自動計算錨定框;此時你可以自己手動計算錨定框。【即使自己的數(shù)據(jù)集中目標(biāo)寬高比最大值小于4,默認(rèn)錨定框也不一定是最合適的】
?首先可以自行編寫一個程序,統(tǒng)計一下你所訓(xùn)練的數(shù)據(jù)集所有標(biāo)簽框?qū)捀弑龋聪聦捀弑戎饕植荚谀膫€范圍、最大寬高比是多少? 比如:你使用的數(shù)據(jù)集中目標(biāo)寬高比最大達(dá)到了 5:1(甚至 10:1) ,那肯定需要重新計算錨定框了,針對coco數(shù)據(jù)集的最大寬高比是 4:1 。
然后在 yolov5 程序中創(chuàng)建一個新的 python 文件 test.py,手動計算錨定框:
import utils.autoanchor as autoAC
# 對數(shù)據(jù)集重新計算 anchors
new_anchors = autoAC.kmean_anchors('./data/mydata.yaml', 9, 640, 5.0, 1000, True)
print(new_anchors)
輸入信息如下(只截取了部分):
autoanchor: Evolving anchors with Genetic Algorithm: fitness = 0.6604: ?87%|████████▋ | 866/1000 [00:00<00:00, 2124.00it/s]autoanchor: thr=0.25: 0.9839 best possible recall, 3.84 anchors past thr
autoanchor: n=9, img_size=640, metric_all=0.267/0.662-mean/best, past_thr=0.476-mean: 15,20, ?38,25, ?55,65, ?131,87, ?97,174, ?139,291, ?256,242, ?368,382, ?565,422
autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20, ?39,26, ?54,64, ?127,87, ?97,176, ?142,286, ?257,245, ?374,379, ?582,424
autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20, ?39,26, ?54,63, ?126,86, ?97,176, ?143,285, ?258,241, ?369,381, ?583,424
autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20, ?39,26, ?54,63, ?127,86, ?97,176, ?143,285, ?258,241, ?369,380, ?583,424
autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20, ?39,26, ?53,63, ?127,86, ?97,175, ?143,284, ?257,243, ?369,381, ?582,422
autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20, ?40,26, ?53,62, ?129,85, ?96,175, ?143,287, ?256,240, ?370,378, ?582,419
autoanchor: Evolving anchors with Genetic Algorithm: fitness = 0.6605: 100%|██████████| 1000/1000 [00:00<00:00, 2170.29it/s]
Scanning '..\coco128\labels\train2017.cache' for images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100%|██████████| 128/128 [00:00<?, ?it/s]
autoanchor: thr=0.25: 0.9849 best possible recall, 3.84 anchors past thr
autoanchor: n=9, img_size=640, metric_all=0.267/0.663-mean/best, past_thr=0.476-mean: 15,20, ?40,26, ?53,62, ?129,85, ?96,175, ?143,287, ?256,240, ?370,378, ?582,419
[[ ? ? 14.931 ? ? ?20.439]
?[ ? ? 39.648 ? ? ? 25.53]
?[ ? ? 53.371 ? ? ? 62.35]
?[ ? ? 129.07 ? ? ?84.774]
?[ ? ? 95.719 ? ? ?175.08]
?[ ? ? 142.69 ? ? ?286.95]
?[ ? ? 256.46 ? ? ?239.83]
?[ ? ? ?369.9 ? ? ? 378.3]
?[ ? ? 581.87 ? ? ?418.56]]
?
Process finished with exit code 0
輸出的 9 組新的錨定框即是根據(jù)自己的數(shù)據(jù)集來計算的,可以按照順序替換到你所使用的配置文件*.yaml中(比如 yolov5s.yaml)。就可以重新訓(xùn)練了。
參考的博文(表示感謝!):
https://github.com/ultralytics/yolov5
https://blog.csdn.net/flyfish1986/article/details/117594265
https://zhuanlan.zhihu.com/p/183838757
https://blog.csdn.net/aabbcccddd01/article/details/109578614
總結(jié)
原文鏈接:https://blog.csdn.net/qq_27278957/article/details/120036450
相關(guān)推薦
- 2021-12-16 C++?OpenCV實(shí)現(xiàn)圖像雙三次插值算法詳解_C 語言
- 2022-09-09 ElasticSearch核心概念_其它綜合
- 2022-07-21 Pandas常用數(shù)據(jù)結(jié)構(gòu)
- 2023-01-09 解決python問題?Traceback?(most?recent?call?last)_pytho
- 2023-04-21 numpy.insert()的具體使用方法_python
- 2022-11-26 Redis下載部署并加入idea應(yīng)用的小結(jié)_Redis
- 2023-04-01 pytorch和numpy默認(rèn)浮點(diǎn)類型位數(shù)詳解_python
- 2022-12-07 C語言中的數(shù)據(jù)整除判斷問題_C 語言
- 最近更新
-
- window11 系統(tǒng)安裝 yarn
- 超詳細(xì)win安裝深度學(xué)習(xí)環(huán)境2025年最新版(
- Linux 中運(yùn)行的top命令 怎么退出?
- MySQL 中decimal 的用法? 存儲小
- get 、set 、toString 方法的使
- @Resource和 @Autowired注解
- Java基礎(chǔ)操作-- 運(yùn)算符,流程控制 Flo
- 1. Int 和Integer 的區(qū)別,Jav
- spring @retryable不生效的一種
- Spring Security之認(rèn)證信息的處理
- Spring Security之認(rèn)證過濾器
- Spring Security概述快速入門
- Spring Security之配置體系
- 【SpringBoot】SpringCache
- Spring Security之基于方法配置權(quán)
- redisson分布式鎖中waittime的設(shè)
- maven:解決release錯誤:Artif
- restTemplate使用總結(jié)
- Spring Security之安全異常處理
- MybatisPlus優(yōu)雅實(shí)現(xiàn)加密?
- Spring ioc容器與Bean的生命周期。
- 【探索SpringCloud】服務(wù)發(fā)現(xiàn)-Nac
- Spring Security之基于HttpR
- Redis 底層數(shù)據(jù)結(jié)構(gòu)-簡單動態(tài)字符串(SD
- arthas操作spring被代理目標(biāo)對象命令
- Spring中的單例模式應(yīng)用詳解
- 聊聊消息隊列,發(fā)送消息的4種方式
- bootspring第三方資源配置管理
- GIT同步修改后的遠(yuǎn)程分支