日本免费高清视频-国产福利视频导航-黄色在线播放国产-天天操天天操天天操天天操|www.shdianci.com

學無先后,達者為師

網站首頁 編程語言 正文

Kotlin協程Dispatchers原理示例詳解_Android

作者:瀟風寒月 ? 更新時間: 2022-09-29 編程語言

前置知識

Kotlin協程不是什么空中閣樓,Kotlin源代碼會被編譯成class字節碼文件,最終會運行到虛擬機中。所以從本質上講,Kotlin和Java是類似的,都是可以編譯產生class的語言,但最終還是會受到虛擬機的限制,它們的代碼最終會在虛擬機上的某個線程上被執行。

之前我們分析了launch的原理,但當時我們沒有去分析協程創建出來后是如何與線程產生關聯的,怎么被分發到具體的線程上執行的,本篇文章就帶大家分析一下。

要想搞懂Dispatchers,我們先來看一下Dispatchers、CoroutineDispatcher、ContinuationInterceptor、CoroutineContext之間的關系

public actual object Dispatchers {
    @JvmStatic
    public actual val Default: CoroutineDispatcher = DefaultScheduler
    @JvmStatic
    public actual val Main: MainCoroutineDispatcher get() = MainDispatcherLoader.dispatcher
    @JvmStatic
    public actual val Unconfined: CoroutineDispatcher = kotlinx.coroutines.Unconfined
    @JvmStatic
    public val IO: CoroutineDispatcher = DefaultIoScheduler
}
public abstract class CoroutineDispatcher :
    AbstractCoroutineContextElement(ContinuationInterceptor), ContinuationInterceptor {
}
public interface ContinuationInterceptor : CoroutineContext.Element {}
public interface Element : CoroutineContext {}

Dispatchers中存放的是協程調度器(它本身是一個單例),有我們平時常用的IO、Default、Main等。這些協程調度器都是CoroutineDispatcher的子類,這些協程調度器其實都是CoroutineContext。

demo

我們先來看一個關于launch的demo:

fun main() {
    val coroutineScope = CoroutineScope(Job())
    coroutineScope.launch {
        println("Thread : ${Thread.currentThread().name}")
    }
    Thread.sleep(5000L)
}

在生成CoroutineScope時,demo中沒有傳入相關的協程調度器,也就是Dispatchers。那這個launch會運行到哪個線程之上?

運行試一下:

Thread : DefaultDispatcher-worker-1

居然運行到了DefaultDispatcher-worker-1線程上,這看起來明顯是Dispatchers.Default協程調度器里面的線程。我明明沒傳Dispatchers相關的context,居然會運行到子線程上。說明運行到default線程是launch默認的。

它是怎么與default線程產生關聯的?打開源碼一探究竟:

public fun CoroutineScope.launch(
    context: CoroutineContext = EmptyCoroutineContext,
    start: CoroutineStart = CoroutineStart.DEFAULT,
    block: suspend CoroutineScope.() -> Unit
): Job {
    //代碼1
    val newContext = newCoroutineContext(context)
    //代碼2
    val coroutine = if (start.isLazy)
        LazyStandaloneCoroutine(newContext, block) else
        StandaloneCoroutine(newContext, active = true)
    //代碼3
    coroutine.start(start, coroutine, block)
    return coroutine
}
  • 將傳入的CoroutineContext構造出新的context
  • 啟動模式,判斷是否為懶加載,如果是懶加載則構建懶加載協程對象,否則就是標準的
  • 啟動協程

我們重點關注代碼1,這是與CoroutineContext相關的。

public actual fun CoroutineScope.newCoroutineContext(context: CoroutineContext): CoroutineContext {
    //從父協程那里繼承過來的context+這次的context
    val combined = coroutineContext.foldCopiesForChildCoroutine() + context
    val debug = if (DEBUG) combined + CoroutineId(COROUTINE_ID.incrementAndGet()) else combined
    //combined可以簡單的把它看成是一個map,它是CoroutineContext類型的
    //如果當前context不等于Dispatchers.Default,而且從map里面取ContinuationInterceptor(用于攔截之后分發線程的)值為空,說明沒有傳入協程應該在哪個線程上運行的相關參數
    return if (combined !== Dispatchers.Default && combined[ContinuationInterceptor] == null)
        debug + Dispatchers.Default else debug
}

調用launch的時候,我們沒有傳入context,默認參數是EmptyCoroutineContext。這里的combined,它其實是CoroutineContext類型的,可以簡單的看成是map(其實不是,只是類似)。

通過combined[ContinuationInterceptor]可以將傳入的線程調度相關的參數給取出來,這里如果取出來為空,是給該context添加了一個Dispatchers.Default,然后把新的context返回出去了。所以launch默認情況下,會走到default線程去執行。

補充一點:CoroutineContext能夠通過+連接是因為它內部有個public operator fun plus函數。能夠通過combined[ContinuationInterceptor]這種方式訪問元素是因為有個public operator fun get函數。

public interface CoroutineContext {
     /**
     * Returns the element with the given [key] from this context or `null`.
     */
    public operator fun <E : Element> get(key: Key<E>): E?
     /**
     * Returns a context containing elements from this context and elements from  other [context].
     * The elements from this context with the same key as in the other one are dropped.
     */
    public operator fun plus(context: CoroutineContext): CoroutineContext {
        ......
    }
}

startCoroutineCancellable

上面我們分析了launch默認情況下,context中會增加Dispatchers.Default的這個協程調度器,到時launch的Lambda會在default線程上執行,其中具體流程是怎么樣的,我們分析一下。

在之前的文章 Kotlin協程之launch原理 中我們分析過,launch默認情況下會最終執行到startCoroutineCancellable函數。

public fun <T> (suspend () -> T).startCoroutineCancellable(completion: Continuation<T>): Unit = runSafely(completion) {
    //構建ContinuationImpl
    createCoroutineUnintercepted(completion).intercepted().resumeCancellableWith(Result.success(Unit))
}
public actual fun <T> (suspend () -> T).createCoroutineUnintercepted(
    completion: Continuation<T>
): Continuation<Unit> {
    val probeCompletion = probeCoroutineCreated(completion)
    return if (this is BaseContinuationImpl)
        //走這里
        create(probeCompletion)
    else
        createCoroutineFromSuspendFunction(probeCompletion) {
            (this as Function1<Continuation<T>, Any?>).invoke(it)
        }
}

在Kotlin協程之launch原理 文章中,咱們分析過create(probeCompletion)這里創建出來的是launch的那個Lambda,編譯器會產生一個匿名內部類,它繼承自SuspendLambda,而SuspendLambda是繼承自ContinuationImpl。

所以 createCoroutineUnintercepted(completion)一開始構建出來的是一個ContinuationImpl,接下來需要去看它的intercepted()函數。

intercepted()函數

internal abstract class ContinuationImpl(
    completion: Continuation<Any?>?,
    private val _context: CoroutineContext?
) : BaseContinuationImpl(completion) {
    constructor(completion: Continuation<Any?>?) : this(completion, completion?.context)
    public override val context: CoroutineContext
        get() = _context!!
    @Transient
    private var intercepted: Continuation<Any?>? = null
    public fun intercepted(): Continuation<Any?> =
        intercepted
            ?: (context[ContinuationInterceptor]?.interceptContinuation(this) ?: this)
                .also { intercepted = it }
}

第一次走到intercepted()函數時,intercepted肯定是為null的,還沒初始化。此時會通過context[ContinuationInterceptor]取出Dispatcher對象,然后調用該Dispatcher對象的interceptContinuation()函數。這個Dispatcher對象在demo這里其實就是Dispatchers.Default。

public actual object Dispatchers {
    @JvmStatic
    public actual val Default: CoroutineDispatcher = DefaultScheduler
}

可以看到,Dispatchers.Default是一個CoroutineDispatcher對象,interceptContinuation()函數就在CoroutineDispatcher中。

public abstract class CoroutineDispatcher :
    AbstractCoroutineContextElement(ContinuationInterceptor), ContinuationInterceptor {
    public final override fun <T> interceptContinuation(continuation: Continuation<T>): Continuation<T> =
        DispatchedContinuation(this, continuation)
}
public fun <T> (suspend () -> T).startCoroutineCancellable(completion: Continuation<T>): Unit = runSafely(completion) {
    createCoroutineUnintercepted(completion).intercepted().resumeCancellableWith(Result.success(Unit))
}

這個方法非常簡單,就是新建并且返回了一個DispatchedContinuation對象,將this和continuation給傳入進去。這里的this是Dispatchers.Default。

所以,最終我們發現走完startCoroutineCancellable的前2步之后,也就是走完intercepted()之后,創建的是DispatchedContinuation對象,最后是調用的DispatchedContinuation的resumeCancellableWith函數。最后這步比較關鍵,這是真正將協程的具體執行邏輯放到線程上執行的部分。

internal class DispatchedContinuation<in T>(
    //這里傳入的dispatcher在demo中是Dispatchers.Default
    @JvmField val dispatcher: CoroutineDispatcher,
    @JvmField val continuation: Continuation<T>
) : DispatchedTask<T>(MODE_UNINITIALIZED), CoroutineStackFrame, Continuation<T> by continuation {
    inline fun resumeCancellableWith(
        result: Result<T>,
        noinline onCancellation: ((cause: Throwable) -> Unit)?
    ) {
        val state = result.toState(onCancellation)
        //代碼1
        if (dispatcher.isDispatchNeeded(context)) {
            _state = state
            resumeMode = MODE_CANCELLABLE
            //代碼2
            dispatcher.dispatch(context, this)
        } else {
            //代碼3
            executeUnconfined(state, MODE_CANCELLABLE) {
                if (!resumeCancelled(state)) {
                    resumeUndispatchedWith(result)
                }
            }
        }
    }
}
internal abstract class DispatchedTask<in T>(
    @JvmField public var resumeMode: Int
) : SchedulerTask() {
    ......
}
internal actual typealias SchedulerTask = Task
internal abstract class Task(
    @JvmField var submissionTime: Long,
    @JvmField var taskContext: TaskContext
) : Runnable {
    ......
}
public abstract class CoroutineDispatcher :
    AbstractCoroutineContextElement(ContinuationInterceptor), ContinuationInterceptor {
    public abstract fun dispatch(context: CoroutineContext, block: Runnable)
    public open fun isDispatchNeeded(context: CoroutineContext): Boolean = true
}

從DispatchedContinuation的繼承結構來看,它既是一個Continuation(通過委托給傳入的continuation參數),也是一個Runnable。

  • 首先看代碼1:這個dispatcher在demo中其實是Dispatchers.Default ,然后調用它的isDispatchNeeded(),這個函數定義在CoroutineDispatcher中,默認就是返回true,只有Dispatchers.Unconfined返回false
  • 代碼2:調用Dispatchers.Default的dispatch函數,將context和自己(DispatchedContinuation,也就是Runnable)傳過去了
  • 代碼3:對應Dispatchers.Unconfined的情況,它的isDispatchNeeded()返回false

現在我們要分析代碼2之后的執行邏輯,也就是將context和Runnable傳入到dispatch函數之后是怎么執行的。按道理,看到Runnable,那可能這個與線程執行相關,應該離我們想要的答案不遠了。回到Dispatchers,我們發現Dispatchers.Default是DefaultScheduler類型的,那我們就去DefaultScheduler中或者其父類中去找dispatch函數。

DefaultScheduler中找dispatch函數

public actual object Dispatchers {
    @JvmStatic
    public actual val Default: CoroutineDispatcher = DefaultScheduler
}
internal object DefaultScheduler : SchedulerCoroutineDispatcher(
    CORE_POOL_SIZE, MAX_POOL_SIZE,
    IDLE_WORKER_KEEP_ALIVE_NS, DEFAULT_SCHEDULER_NAME
) {
    ......
}
internal open class SchedulerCoroutineDispatcher(
    private val corePoolSize: Int = CORE_POOL_SIZE,
    private val maxPoolSize: Int = MAX_POOL_SIZE,
    private val idleWorkerKeepAliveNs: Long = IDLE_WORKER_KEEP_ALIVE_NS,
    private val schedulerName: String = "CoroutineScheduler",
) : ExecutorCoroutineDispatcher() {
    private var coroutineScheduler = createScheduler()
    private fun createScheduler() =
        CoroutineScheduler(corePoolSize, maxPoolSize, idleWorkerKeepAliveNs, schedulerName)
     override fun dispatch(context: CoroutineContext, block: Runnable): Unit = coroutineScheduler.dispatch(block)
}

最后發現dispatch函數在其父類SchedulerCoroutineDispatcher中,在這里構建了一個CoroutineScheduler,直接調用了CoroutineScheduler對象的dispatch,然后將Runnable(也就是上面的DispatchedContinuation對象)傳入。

Runnable傳入

internal class CoroutineScheduler(
    @JvmField val corePoolSize: Int,
    @JvmField val maxPoolSize: Int,
    @JvmField val idleWorkerKeepAliveNs: Long = IDLE_WORKER_KEEP_ALIVE_NS,
    @JvmField val schedulerName: String = DEFAULT_SCHEDULER_NAME
) : Executor, Closeable {
    override fun execute(command: Runnable) = dispatch(command)
    fun dispatch(block: Runnable, taskContext: TaskContext = NonBlockingContext, tailDispatch: Boolean = false) {
        trackTask() // this is needed for virtual time support
        //代碼1:構建Task,Task實現了Runnable接口
        val task = createTask(block, taskContext)
        //代碼2:取當前線程轉為Worker對象,Worker是一個繼承自Thread的類
        val currentWorker = currentWorker()
        //代碼3:嘗試將Task提交到本地隊列并根據結果執行相應的操作
        val notAdded = currentWorker.submitToLocalQueue(task, tailDispatch)
        if (notAdded != null) {
            //代碼4:notAdded不為null,則再將notAdded(Task)添加到全局隊列中
            if (!addToGlobalQueue(notAdded)) {
                throw RejectedExecutionException("$schedulerName was terminated")
            }
        }
        val skipUnpark = tailDispatch && currentWorker != null
        // Checking 'task' instead of 'notAdded' is completely okay
        if (task.mode == TASK_NON_BLOCKING) {
            if (skipUnpark) return
            //代碼5: 創建Worker并開始執行該線程
            signalCpuWork()
        } else {
            // Increment blocking tasks anyway
            signalBlockingWork(skipUnpark = skipUnpark)
        }
    }
    private fun currentWorker(): Worker? = (Thread.currentThread() as? Worker)?.takeIf { it.scheduler == this }
    internal inner class Worker private constructor() : Thread() {
        .....
    }
}

觀察發現,原來CoroutineScheduler類實現了java.util.concurrent.Executor接口,同時實現了它的execute方法,這個方法也會調用dispatch()。

  • 代碼1:首先是通過Runnable構建了一個Task,這個Task其實也是實現了Runnable接口,只是把傳入的Runnable包裝了一下
  • 代碼2:將當前線程取出來轉換成Worker,當然第一次時,這個轉換不會成功,這個Worker是繼承自Thread的一個類
  • 代碼3:將task提交到本地隊列中,這個本地隊列待會兒會在Worker這個線程執行時取出Task,并執行Task
  • 代碼4:如果task提交到本地隊列的過程中沒有成功,那么會添加到全局隊列中,待會兒也會被Worker取出來Task并執行
  • 代碼5:創建Worker線程,并開始執行

開始執行Worker線程之后,我們需要看一下這個線程的run方法執行的是啥,也就是它的具體執行邏輯。

Worker線程執行邏輯

internal inner class Worker private constructor() : Thread() {
    override fun run() = runWorker()
    private fun runWorker() {
        var rescanned = false
        while (!isTerminated && state != WorkerState.TERMINATED) {
            //代碼1
            val task = findTask(mayHaveLocalTasks)
            if (task != null) {
                rescanned = false
                minDelayUntilStealableTaskNs = 0L
                //代碼2
                executeTask(task)
                continue
            } else {
                mayHaveLocalTasks = false
            }
            if (minDelayUntilStealableTaskNs != 0L) {
                if (!rescanned) {
                    rescanned = true
                } else {
                    rescanned = false
                    tryReleaseCpu(WorkerState.PARKING)
                    interrupted()
                    LockSupport.parkNanos(minDelayUntilStealableTaskNs)
                    minDelayUntilStealableTaskNs = 0L
                }
                continue
            }
            tryPark()
        }
        tryReleaseCpu(WorkerState.TERMINATED)
    }
    fun findTask(scanLocalQueue: Boolean): Task? {
        if (tryAcquireCpuPermit()) return findAnyTask(scanLocalQueue)
        // If we can't acquire a CPU permit -- attempt to find blocking task
        val task = if (scanLocalQueue) {
            localQueue.poll() ?: globalBlockingQueue.removeFirstOrNull()
        } else {
            globalBlockingQueue.removeFirstOrNull()
        }
        return task ?: trySteal(blockingOnly = true)
    }
    private fun executeTask(task: Task) {
        val taskMode = task.mode
        idleReset(taskMode)
        beforeTask(taskMode)
        runSafely(task)
        afterTask(taskMode)
    }
    fun runSafely(task: Task) {
        try {
            task.run()
        } catch (e: Throwable) {
            val thread = Thread.currentThread()
            thread.uncaughtExceptionHandler.uncaughtException(thread, e)
        } finally {
            unTrackTask()
        }
    }
}

run方法直接調用的runWorker(),在里面是一個while循環,不斷從隊列中取Task來執行。

  • 代碼1:從本地隊列或者全局隊列中取出Task
  • 代碼2:執行這個task,最終其實就是調用這個Runnable的run方法。

也就是說,在Worker這個線程中,執行了這個Runnable的run方法。還記得這個Runnable是誰么?它就是上面我們看過的DispatchedContinuation,這里的run方法執行的就是協程任務,那這塊具體的run方法的實現邏輯,我們應該到DispatchedContinuation中去找。

internal class DispatchedContinuation<in T>(
    @JvmField val dispatcher: CoroutineDispatcher,
    @JvmField val continuation: Continuation<T>
) : DispatchedTask<T>(MODE_UNINITIALIZED), CoroutineStackFrame, Continuation<T> by continuation {
    ......
}
internal abstract class DispatchedTask<in T>(
    @JvmField public var resumeMode: Int
) : SchedulerTask() {
    public final override fun run() {
        assert { resumeMode != MODE_UNINITIALIZED } // should have been set before dispatching
        val taskContext = this.taskContext
        var fatalException: Throwable? = null
        try {
            val delegate = delegate as DispatchedContinuation<T>
            val continuation = delegate.continuation
            withContinuationContext(continuation, delegate.countOrElement) {
                val context = continuation.context
                val state = takeState() // NOTE: Must take state in any case, even if cancelled
                val exception = getExceptionalResult(state)
                /*
                 * Check whether continuation was originally resumed with an exception.
                 * If so, it dominates cancellation, otherwise the original exception
                 * will be silently lost.
                 */
                val job = if (exception == null && resumeMode.isCancellableMode) context[Job] else null
                //非空,且未處于active狀態
                if (job != null && !job.isActive) {
                    //開始之前,協程已經被取消,將具體的Exception傳出去
                    val cause = job.getCancellationException()
                    cancelCompletedResult(state, cause)
                    continuation.resumeWithStackTrace(cause)
                } else {
                    //有異常,傳遞異常
                    if (exception != null) {
                        continuation.resumeWithException(exception)
                    } else {
                        //代碼1
                        continuation.resume(getSuccessfulResult(state))
                    }
                }
            }
        } catch (e: Throwable) {
            // This instead of runCatching to have nicer stacktrace and debug experience
            fatalException = e
        } finally {
            val result = runCatching { taskContext.afterTask() }
            handleFatalException(fatalException, result.exceptionOrNull())
        }
    }
}

我們主要看一下代碼1處,調用了resume開啟協程。前面沒有異常,才開始啟動協程,這里才是真正的開始啟動協程,開始執行launch傳入的Lambda表達式。這個時候,協程的邏輯是在Worker這個線程上執行的了,切到某個線程上執行的邏輯已經完成了。

ps: rusume會走到BaseContinuationImpl的rusumeWith,然后走到launch傳入的Lambda匿名內部類的invokeSuspend方法,開始執行狀態機邏輯。前面的文章 Kotlin協程createCoroutine和startCoroutine原理 我們分析過這里,這里就只是簡單提一下。

到這里,Dispatchers的執行流程就算完了,前后都串起來了。

小結

Dispatchers是協程框架中與線程交互的關鍵。底層會有不同的線程池,Dispatchers.Default、IO,協程任務來了的時候會封裝成一個個的Runnable,丟到線程中執行,這些Runnable的run方法中執行的其實就是continuation.resume,也就是launch的Lambda生成的SuspendLambda匿名內部類,也就是開啟協程狀態機,開始協程的真正執行。

原文鏈接:https://juejin.cn/post/7127492385923137549

欄目分類
最近更新