日本免费高清视频-国产福利视频导航-黄色在线播放国产-天天操天天操天天操天天操|www.shdianci.com

學無先后,達者為師

網(wǎng)站首頁 編程語言 正文

如何使用python生成大量數(shù)據(jù)寫入es數(shù)據(jù)庫并查詢操作_python

作者:IT之一小佬 ? 更新時間: 2022-11-07 編程語言

前言:

模擬學生成績信息寫入es數(shù)據(jù)庫,包括姓名、性別、科目、成績。

示例代碼1:【一次性寫入10000*1000條數(shù)據(jù)】? 【本人親測耗時5100秒】

from elasticsearch import Elasticsearch
from elasticsearch import helpers
import random
import time
es = Elasticsearch(hosts='http://127.0.0.1:9200')
# print(es)
 
names = ['劉一', '陳二', '張三', '李四', '王五', '趙六', '孫七', '周八', '吳九', '鄭十']
sexs = ['男', '女']
subjects = ['語文', '數(shù)學', '英語', '生物', '地理']
grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]
datas = []
 
start = time.time()
# 開始批量寫入es數(shù)據(jù)庫
# 批量寫入數(shù)據(jù)
for j in range(1000):
    print(j)
    action = [
        {
            "_index": "grade",
            "_type": "doc",
            "_id": i,
            "_source": {
                "id": i,
                "name": random.choice(names),
                "sex": random.choice(sexs),
                "subject": random.choice(subjects),
                "grade": random.choice(grades)
            }
        } for i in range(10000 * j, 10000 * j + 10000)
    ]
    helpers.bulk(es, action)
end = time.time()
print('花費時間:', end - start)

elasticsearch-head中顯示:

示例代碼2:【一次性寫入10000*5000條數(shù)據(jù)】? 【本人親測耗時23000秒】

from elasticsearch import Elasticsearch
from elasticsearch import helpers
import random
import time
 
es = Elasticsearch(hosts='http://127.0.0.1:9200')
# print(es)
names = ['劉一', '陳二', '張三', '李四', '王五', '趙六', '孫七', '周八', '吳九', '鄭十']
sexs = ['男', '女']
subjects = ['語文', '數(shù)學', '英語', '生物', '地理']
grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]
datas = []
start = time.time()
# 開始批量寫入es數(shù)據(jù)庫
# 批量寫入數(shù)據(jù)
for j in range(5000):
    print(j)
    action = [
        {
            "_index": "grade3",
            "_type": "doc",
            "_id": i,
            "_source": {
                "id": i,
                "name": random.choice(names),
                "sex": random.choice(sexs),
                "subject": random.choice(subjects),
                "grade": random.choice(grades)
            }
        } for i in range(10000 * j, 10000 * j + 10000)
    ]
    helpers.bulk(es, action)
end = time.time()
print('花費時間:', end - start)

示例代碼3:【一次性寫入10000*9205條數(shù)據(jù)】? 【耗時過長】

from elasticsearch import Elasticsearch
from elasticsearch import helpers
import random
import time
 
es = Elasticsearch(hosts='http://127.0.0.1:9200')
names = ['劉一', '陳二', '張三', '李四', '王五', '趙六', '孫七', '周八', '吳九', '鄭十']
sexs = ['男', '女']
subjects = ['語文', '數(shù)學', '英語', '生物', '地理']
grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]
datas = []
 
start = time.time()
# 開始批量寫入es數(shù)據(jù)庫
# 批量寫入數(shù)據(jù)
for j in range(9205):
    print(j)
    action = [
        {
            "_index": "grade2",
            "_type": "doc",
            "_id": i,
            "_source": {
                "id": i,
                "name": random.choice(names),
                "sex": random.choice(sexs),
                "subject": random.choice(subjects),
                "grade": random.choice(grades)
            }
        } for i in range(10000*j, 10000*j+10000)
    ]
    helpers.bulk(es, action)
end = time.time()
print('花費時間:', end - start)

查詢數(shù)據(jù)并計算各種方式的成績總分。

示例代碼4:【一次性獲取所有的數(shù)據(jù),在程序中分別計算所耗的時間】

from elasticsearch import Elasticsearch
import time
def search_data(es, size=10):
    query = {
        "query": {
            "match_all": {}
        }
    }
    res = es.search(index='grade', body=query, size=size)
    # print(res)
    return res
if __name__ == '__main__':
    start = time.time()
    es = Elasticsearch(hosts='http://192.168.1.1:9200')
    # print(es)
    size = 10000
    res = search_data(es, size)
    # print(type(res))
    # total = res['hits']['total']['value']
    # print(total)
    all_source = []
    for i in range(size):
        source = res['hits']['hits'][i]['_source']
        all_source.append(source)
        # print(source)
 
    # 統(tǒng)計查詢出來的所有學生的所有課程的所有成績的總成績
    start1 = time.time()
    all_grade = 0
    for data in all_source:
        all_grade += int(data['grade'])
    print('所有學生總成績之和:', all_grade)
    end1 = time.time()
    print("耗時:", end1 - start1)
 
    # 統(tǒng)計查詢出來的每個學生的所有課程的所有成績的總成績
    start2 = time.time()
    names1 = []
    all_name_grade = {}
    for data in all_source:
        if data['name'] in names1:
            all_name_grade[data['name']] += data['grade']
        else:
            names1.append(data['name'])
            all_name_grade[data['name']] = data['grade']
    print(all_name_grade)
    end2 = time.time()
    print("耗時:", end2 - start2)
 
    # 統(tǒng)計查詢出來的每個學生的每門課程的所有成績的總成績
    start3 = time.time()
    names2 = []
    subjects = []
    all_name_all_subject_grade = {}
    for data in all_source:
        if data['name'] in names2:
            if all_name_all_subject_grade[data['name']].get(data['subject']):
                all_name_all_subject_grade[data['name']][data['subject']] += data['grade']
            else:
                all_name_all_subject_grade[data['name']][data['subject']] = data['grade']
        else:
            names2.append(data['name'])
            all_name_all_subject_grade[data['name']] = {}
            all_name_all_subject_grade[data['name']][data['subject']] = data['grade']
    print(all_name_all_subject_grade)
    end3 = time.time()
    print("耗時:", end3 - start3)
    end = time.time()
    print('總耗時:', end - start)

運行結果:

在示例代碼4中當把size由10000改為 2000000時,運行效果如下所示:

在項目中一般不用上述代碼4中所統(tǒng)計成績的方法,面對大量的數(shù)據(jù)是比較耗時的,要使用es中的聚合查詢。計算數(shù)據(jù)中所有成績之和。

示例代碼5:【使用普通計算方法和聚類方法做對比驗證】

from elasticsearch import Elasticsearch
import time
def search_data(es, size=10):
    query = {
        "query": {
            "match_all": {}
        }
    }
    res = es.search(index='grade', body=query, size=size)
    # print(res)
    return res
 
def search_data2(es, size=10):
    query = {
        "aggs": {
            "all_grade": {
                "terms": {
                    "field": "grade",
                    "size": 1000
                }
            }
        }
    }
    res = es.search(index='grade', body=query, size=size)
    # print(res)
    return res
 
 if __name__ == '__main__':
    start = time.time()
    es = Elasticsearch(hosts='http://127.0.0.1:9200')
    size = 2000000
    res = search_data(es, size)
    all_source = []
    for i in range(size):
        source = res['hits']['hits'][i]['_source']
        all_source.append(source)
        # print(source)
 
    # 統(tǒng)計查詢出來的所有學生的所有課程的所有成績的總成績
    start1 = time.time()
    all_grade = 0
    for data in all_source:
        all_grade += int(data['grade'])
    print('200萬數(shù)據(jù)所有學生總成績之和:', all_grade)
    end1 = time.time()
    print("耗時:", end1 - start1)
 
    end = time.time()
    print('200萬數(shù)據(jù)總耗時:', end - start)
 
    # 聚合操作
    start_aggs = time.time()
    es = Elasticsearch(hosts='http://127.0.0.1:9200')
    # size = 2000000
    size = 0
    res = search_data2(es, size)
    # print(res)
    aggs = res['aggregations']['all_grade']['buckets']
    print(aggs)
 
    sum = 0
    for agg in aggs:
        sum += (agg['key'] * agg['doc_count'])
 
    print('1000萬數(shù)據(jù)總成績之和:', sum)
    end_aggs = time.time()
    print('1000萬數(shù)據(jù)總耗時:', end_aggs - start_aggs)

運行結果:

計算數(shù)據(jù)中每個同學的各科總成績之和。?

示例代碼6:? 【子聚合】【先分組,再計算】

from elasticsearch import Elasticsearch
import time
def search_data(es, size=10):
    query = {
        "query": {
            "match_all": {}
        }
    }
    res = es.search(index='grade', body=query, size=size)
    # print(res)
    return res
 def search_data2(es):
    query = {
        "size": 0,
        "aggs": {
            "all_names": {
                "terms": {
                    "field": "name.keyword",
                    "size": 10
                },
                "aggs": {
                    "total_grade": {
                        "sum": {
                            "field": "grade"
                        }
                    }
                }
            }
        }
    }
    res = es.search(index='grade', body=query)
    # print(res)
    return res
 if __name__ == '__main__':
    start = time.time()
    es = Elasticsearch(hosts='http://127.0.0.1:9200')
    size = 2000000
    res = search_data(es, size)
    all_source = []
    for i in range(size):
        source = res['hits']['hits'][i]['_source']
        all_source.append(source)
        # print(source)
 
    # 統(tǒng)計查詢出來的每個學生的所有課程的所有成績的總成績
    start2 = time.time()
    names1 = []
    all_name_grade = {}
    for data in all_source:
        if data['name'] in names1:
            all_name_grade[data['name']] += data['grade']
        else:
            names1.append(data['name'])
            all_name_grade[data['name']] = data['grade']
    print(all_name_grade)
    end2 = time.time()
    print("200萬數(shù)據(jù)耗時:", end2 - start2)
 
    end = time.time()
    print('200萬數(shù)據(jù)總耗時:', end - start)
 
    # 聚合操作
    start_aggs = time.time()
    es = Elasticsearch(hosts='http://127.0.0.1:9200')
    res = search_data2(es)
    # print(res)
 
    aggs = res['aggregations']['all_names']['buckets']
    # print(aggs)
    dic = {}
    for agg in aggs:
        dic[agg['key']] = agg['total_grade']['value']
 
    print('1000萬數(shù)據(jù):', dic)
    end_aggs = time.time()
    print('1000萬數(shù)據(jù)總耗時:', end_aggs - start_aggs)

運行結果:

計算數(shù)據(jù)中每個同學的每科成績之和。?

示例代碼7:

from elasticsearch import Elasticsearch
import time
def search_data(es, size=10):
    query = {
        "query": {
            "match_all": {}
        }
    }
    res = es.search(index='grade', body=query, size=size)
    # print(res)
    return res
 def search_data2(es):
    query = {
        "size": 0,
        "aggs": {
            "all_names": {
                "terms": {
                    "field": "name.keyword",
                    "size": 10
                },
                "aggs": {
                    "all_subjects": {
                        "terms": {
                            "field": "subject.keyword",
                            "size": 5
                        },
                        "aggs": {
                            "total_grade": {
                                "sum": {
                                    "field": "grade"
                                }
                            }
                        }
                    }
                }
            }
        }
    }
    res = es.search(index='grade', body=query)
    # print(res)
    return res
 if __name__ == '__main__':
    start = time.time()
    es = Elasticsearch(hosts='http://127.0.0.1:9200')
    size = 2000000
    res = search_data(es, size)
    all_source = []
    for i in range(size):
        source = res['hits']['hits'][i]['_source']
        all_source.append(source)
        # print(source)
 
    # 統(tǒng)計查詢出來的每個學生的每門課程的所有成績的總成績
    start3 = time.time()
    names2 = []
    subjects = []
    all_name_all_subject_grade = {}
    for data in all_source:
        if data['name'] in names2:
            if all_name_all_subject_grade[data['name']].get(data['subject']):
                all_name_all_subject_grade[data['name']][data['subject']] += data['grade']
            else:
                all_name_all_subject_grade[data['name']][data['subject']] = data['grade']
        else:
            names2.append(data['name'])
            all_name_all_subject_grade[data['name']] = {}
            all_name_all_subject_grade[data['name']][data['subject']] = data['grade']
    print('200萬數(shù)據(jù):', all_name_all_subject_grade)
    end3 = time.time()
    print("耗時:", end3 - start3)
    end = time.time()
    print('200萬數(shù)據(jù)總耗時:', end - start)
 
    # 聚合操作
    start_aggs = time.time()
    es = Elasticsearch(hosts='http://127.0.0.1:9200')
    res = search_data2(es)
    # print(res)
    aggs = res['aggregations']['all_names']['buckets']
    # print(aggs)
 
    dic = {}
    for agg in aggs:
        dic[agg['key']] = {}
        for sub in agg['all_subjects']['buckets']:
            dic[agg['key']][sub['key']] = sub['total_grade']['value']
    print('1000萬數(shù)據(jù):', dic)
    end_aggs = time.time()
    print('1000萬數(shù)據(jù)總耗時:', end_aggs - start_aggs)

運行結果:

?在上面查詢計算示例代碼中,當使用含有1000萬數(shù)據(jù)的索引grade時,普通方法查詢計算是比較耗時的,使用聚合查詢能夠大大節(jié)約大量時間。當面對9205萬數(shù)據(jù)的索引grade2時,這時使用普通計算方法所消耗的時間太大了,在線上開發(fā)環(huán)境中是不可用的,所以必須使用聚合方法來計算。

示例代碼8:

from elasticsearch import Elasticsearch
import time
def search_data(es):
    query = {
        "size": 0,
        "aggs": {
            "all_names": {
                "terms": {
                    "field": "name.keyword",
                    "size": 10
                },
                "aggs": {
                    "all_subjects": {
                        "terms": {
                            "field": "subject.keyword",
                            "size": 5
                        },
                        "aggs": {
                            "total_grade": {
                                "sum": {
                                    "field": "grade"
                                }
                            }
                        }
                    }
                }
            }
        }
    }
    res = es.search(index='grade2', body=query)
    # print(res)
    return res
 if __name__ == '__main__':
    # 聚合操作
    start_aggs = time.time()
    es = Elasticsearch(hosts='http://127.0.0.1:9200')
    res = search_data(es)
    # print(res)
 
    aggs = res['aggregations']['all_names']['buckets']
    # print(aggs)
 
    dic = {}
    for agg in aggs:
        dic[agg['key']] = {}
        for sub in agg['all_subjects']['buckets']:
            dic[agg['key']][sub['key']] = sub['total_grade']['value']
    print('9205萬數(shù)據(jù):', dic)
    end_aggs = time.time()
    print('9205萬數(shù)據(jù)總耗時:', end_aggs - start_aggs)

運行結果:

注意:寫查詢語句時建議使用kibana去寫,然后復制查詢語句到代碼中,kibana會提示查詢語句。

原文鏈接:https://blog.csdn.net/weixin_44799217/article/details/126794236

欄目分類
最近更新