網站首頁 編程語言 正文
TextRank 是一種基于 PageRank 的算法,常用于關鍵詞提取和文本摘要。在本文中,我將通過一個關鍵字提取示例幫助您了解 TextRank 如何工作,并展示 Python 的實現。
使用 TextRank、NER 等進行關鍵詞提取
1.PageRank簡介
關于 PageRank 的文章有很多,我只簡單介紹一下 PageRank。這將有助于我們稍后理解 TextRank,因為它是基于 PageRank 的。
PageRank (PR) 是一種用于計算網頁權重的算法。我們可以把所有的網頁看成一個大的有向圖。在此圖中,節點是網頁。如果網頁 A 有指向網頁 B 的鏈接,則它可以表示為從 A 到 B 的有向邊。
構建完整個圖后,我們可以通過以下公式為網頁分配權重。
這是一個示例,可以更好地理解上面的符號。我們有一個圖表來表示網頁如何相互鏈接。每個節點代表一個網頁,箭頭代表邊。我們想得到網頁 e 的權重。
我們可以將上述函數中的求和部分重寫為更簡單的版本。
我們可以通過下面的函數得到網頁 e 的權重。
我們可以看到網頁 e 的權重取決于其入站頁面的權重。我們需要多次運行此迭代才能獲得最終權重。初始化時,每個網頁的重要性為 1。
2.PageRank實現
我們可以用一個矩陣來表示圖中 a、b、e、f 之間的入站和出站鏈接。
一行中的每個節點表示來自其他節點的入站鏈接。例如,對于 e 行,節點 a 和 b 具有指向節點 e 的出站鏈接。本演示文稿將簡化更新權重的計算。
根據
?從函數中,我們應該規范化每一列。
我們使用這個矩陣乘以所有節點的權重。
這只是一次沒有阻尼系數 d 的迭代。
我們可以使用 Python 進行多次迭代。
import numpy as np g = [[0, 0, 0, 0], [0, 0, 0, 0], [1, 0.5, 0, 0], [0, 0.5, 0, 0]] g = np.array(g) pr = np.array([1, 1, 1, 1]) # initialization for a, b, e, f is 1 d = 0.85 for iter in range(10): pr = 0.15 + 0.85 * np.dot(g, pr) print(iter) print(pr)
0
[0.15 0.15 1.425 0.575]
1
[0.15 0.15 0.34125 0.21375]
2
[0.15 0.15 0.34125 0.21375]
3
[0.15 0.15 0.34125 0.21375]
4
[0.15 0.15 0.34125 0.21375]
5
[0.15 0.15 0.34125 0.21375]
6
[0.15 0.15 0.34125 0.21375]
7
[0.15 0.15 0.34125 0.21375]
8
[0.15 0.15 0.34125 0.21375]
9
[0.15 0.15 0.34125 0.21375]
10
[0.15 0.15 0.34125 0.21375]
所以 e 的權重(PageRank值)為 0.34125。
如果我們把有向邊變成無向邊,我們就可以相應地改變矩陣。
規范化。
我們應該相應地更改代碼。
import numpy as np g = [[0, 0, 0.5, 0], [0, 0, 0.5, 1], [1, 0.5, 0, 0], [0, 0.5, 0, 0]] g = np.array(g) pr = np.array([1, 1, 1, 1]) # initialization for a, b, e, f is 1 d = 0.85 for iter in range(10): pr = 0.15 + 0.85 * np.dot(g, pr) print(iter) print(pr)
0
[0.575 1.425 1.425 0.575]
1
[0.755625 1.244375 1.244375 0.755625]
2
[0.67885937 1.32114062 1.32114062 0.67885937]
3
[0.71148477 1.28851523 1.28851523 0.71148477]
4
[0.69761897 1.30238103 1.30238103 0.69761897]
5
[0.70351194 1.29648806 1.29648806 0.70351194]
6
[0.70100743 1.29899257 1.29899257 0.70100743]
7
[0.70207184 1.29792816 1.29792816 0.70207184]
8
[0.70161947 1.29838053 1.29838053 0.70161947]
9
[0.70181173 1.29818827 1.29818827 0.70181173]
所以 e 的權重(PageRank值)為 1.29818827。
3.TextRank原理
TextRank 和 PageTank 有什么區別呢?
簡而言之 PageRank 用于網頁排名,TextRank 用于文本排名。 PageRank 中的網頁就是 TextRank 中的文本,所以基本思路是一樣的。
我們將一個文檔分成幾個句子,我們只存儲那些帶有特定 POS 標簽的詞。我們使用 spaCy 進行詞性標注。
import spacy nlp = spacy.load('en_core_web_sm') content = ''' The Wandering Earth, described as China's first big-budget science fiction thriller, quietly made it onto screens at AMC theaters in North America this weekend, and it shows a new side of Chinese filmmaking — one focused toward futuristic spectacles rather than China's traditionally grand, massive historical epics. At the same time, The Wandering Earth feels like a throwback to a few familiar eras of American filmmaking. While the film's cast, setting, and tone are all Chinese, longtime science fiction fans are going to see a lot on the screen that reminds them of other movies, for better or worse. ''' doc = nlp(content) for sents in doc.sents: print(sents.text)
我們將段落分成三個句子。
The Wandering Earth, described as China’s first big-budget science fiction thriller, quietly made it onto screens at AMC theaters in North America this weekend, and it shows a new side of Chinese filmmaking — one focused toward futuristic spectacles rather than China’s traditionally grand, massive historical epics.
At the same time, The Wandering Earth feels like a throwback to a few familiar eras of American filmmaking.
While the film’s cast, setting, and tone are all Chinese, longtime science fiction fans are going to see a lot on the screen that reminds them of other movies, for better or worse.
因為句子中的大部分詞對確定重要性沒有用,我們只考慮帶有 NOUN、PROPN、VERB POS 標簽的詞。這是可選的,你也可以使用所有的單詞。
candidate_pos = ['NOUN', 'PROPN', 'VERB'] sentences = [] for sent in doc.sents: selected_words = [] for token in sent: if token.pos_ in candidate_pos and token.is_stop is False: selected_words.append(token) sentences.append(selected_words) print(sentences)
[[Wandering, Earth, described, China, budget, science, fiction, thriller, screens, AMC, theaters, North, America, weekend, shows, filmmaking, focused, spectacles, China, epics],?
[time, Wandering, Earth, feels, throwback, eras, filmmaking],?
[film, cast, setting, tone, science, fiction, fans, going, lot, screen, reminds, movies]]
每個詞都是 PageRank 中的一個節點。我們將窗口大小設置為 k。
[ w 1 , w 2 , … , w k ] , [ w 2 , w 3 , … , w k + 1 ] , [ w 3 , w 4 , … , w k + 2 ] [w1, w2, …, w_k], [w2, w3, …, w_{k+1}], [w3, w4, …, w_{k+2}] [w1,w2,…,wk?],[w2,w3,…,wk+1?],[w3,w4,…,wk+2?] 是窗口。窗口中的任何兩個詞對都被認為具有無向邊。
我們以 [time, wandering, earth, feels, throwback, era, filmmaking]
為例,設置窗口大小 k = 4 k=4 k=4,所以得到 4 個窗口,[time, Wandering, Earth, feels]
,[Wandering, Earth, feels, throwback]
,[Earth, feels, throwback, eras]
,[feels, throwback, eras, filmmaking]
。
對于窗口 [time, Wandering, Earth, feels]
,任何兩個詞對都有一條無向邊。所以我們得到 (time, Wandering)
,(time, Earth)
,(time, feels)
,(Wandering, Earth)
,(Wandering, feels)
,(Earth, feels)
。
基于此圖,我們可以計算每個節點(單詞)的權重。最重要的詞可以用作關鍵字。
4.TextRank提取關鍵詞
這里我用 Python 實現了一個完整的例子,我們使用 spaCy 來獲取詞的詞性標簽。
from collections import OrderedDict import numpy as np import spacy from spacy.lang.en.stop_words import STOP_WORDS nlp = spacy.load('en_core_web_sm') class TextRank4Keyword(): """Extract keywords from text""" def __init__(self): self.d = 0.85 # damping coefficient, usually is .85 self.min_diff = 1e-5 # convergence threshold self.steps = 10 # iteration steps self.node_weight = None # save keywords and its weight def set_stopwords(self, stopwords): """Set stop words""" for word in STOP_WORDS.union(set(stopwords)): lexeme = nlp.vocab[word] lexeme.is_stop = True def sentence_segment(self, doc, candidate_pos, lower): """Store those words only in cadidate_pos""" sentences = [] for sent in doc.sents: selected_words = [] for token in sent: # Store words only with cadidate POS tag if token.pos_ in candidate_pos and token.is_stop is False: if lower is True: selected_words.append(token.text.lower()) else: selected_words.append(token.text) sentences.append(selected_words) return sentences def get_vocab(self, sentences): """Get all tokens""" vocab = OrderedDict() i = 0 for sentence in sentences: for word in sentence: if word not in vocab: vocab[word] = i i += 1 return vocab def get_token_pairs(self, window_size, sentences): """Build token_pairs from windows in sentences""" token_pairs = list() for sentence in sentences: for i, word in enumerate(sentence): for j in range(i+1, i+window_size): if j >= len(sentence): break pair = (word, sentence[j]) if pair not in token_pairs: token_pairs.append(pair) return token_pairs def symmetrize(self, a): return a + a.T - np.diag(a.diagonal()) def get_matrix(self, vocab, token_pairs): """Get normalized matrix""" # Build matrix vocab_size = len(vocab) g = np.zeros((vocab_size, vocab_size), dtype='float') for word1, word2 in token_pairs: i, j = vocab[word1], vocab[word2] g[i][j] = 1 # Get Symmeric matrix g = self.symmetrize(g) # Normalize matrix by column norm = np.sum(g, axis=0) g_norm = np.divide(g, norm, where=norm!=0) # this is ignore the 0 element in norm return g_norm def get_keywords(self, number=10): """Print top number keywords""" node_weight = OrderedDict(sorted(self.node_weight.items(), key=lambda t: t[1], reverse=True)) for i, (key, value) in enumerate(node_weight.items()): print(key + ' - ' + str(value)) if i > number: break def analyze(self, text, candidate_pos=['NOUN', 'PROPN'], window_size=4, lower=False, stopwords=list()): """Main function to analyze text""" # Set stop words self.set_stopwords(stopwords) # Pare text by spaCy doc = nlp(text) # Filter sentences sentences = self.sentence_segment(doc, candidate_pos, lower) # list of list of words # Build vocabulary vocab = self.get_vocab(sentences) # Get token_pairs from windows token_pairs = self.get_token_pairs(window_size, sentences) # Get normalized matrix g = self.get_matrix(vocab, token_pairs) # Initionlization for weight(pagerank value) pr = np.array([1] * len(vocab)) # Iteration previous_pr = 0 for epoch in range(self.steps): pr = (1-self.d) + self.d * np.dot(g, pr) if abs(previous_pr - sum(pr)) < self.min_diff: break else: previous_pr = sum(pr) # Get weight for each node node_weight = dict() for word, index in vocab.items(): node_weight[word] = pr[index] self.node_weight = node_weight
這個 TextRank4Keyword
實現了前文描述的相關功能。我們可以看到一段的輸出。
text = ''' The Wandering Earth, described as China's first big-budget science fiction thriller, quietly made it onto screens at AMC theaters in North America this weekend, and it shows a new side of Chinese filmmaking — one focused toward futuristic spectacles rather than China's traditionally grand, massive historical epics. At the same time, The Wandering Earth feels like a throwback to a few familiar eras of American filmmaking. While the film's cast, setting, and tone are all Chinese, longtime science fiction fans are going to see a lot on the screen that reminds them of other movies, for better or worse. ''' tr4w = TextRank4Keyword() tr4w.analyze(text, candidate_pos = ['NOUN', 'PROPN'], window_size=4, lower=False) tr4w.get_keywords(10)
science - 1.717603106506989
fiction - 1.6952610926181002
filmmaking - 1.4388798751402918
China - 1.4259793786986021
Earth - 1.3088154732297723
tone - 1.1145002295684114
Chinese - 1.0996896235078055
Wandering - 1.0071059904601571
weekend - 1.002449354657688
America - 0.9976329264870932
budget - 0.9857269586649321
North - 0.9711240881032547
原文鏈接:https://blog.csdn.net/be_racle/article/details/128071315
相關推薦
- 2022-05-27 iOS實現拼圖小游戲_IOS
- 2022-05-22 C++的拷貝構造函數你了解嗎_C 語言
- 2023-07-04 解決Uncaught (in promise) TypeError: Cannot read pro
- 2022-08-21 python深度學習tensorflow入門基礎教程示例_python
- 2022-11-29 C#泛型的使用案例_C#教程
- 2022-07-08 python?讀寫csv文件方式(創建,追加,覆蓋)_python
- 2022-07-10 同時啟動兩個項目,產生的跨域問題
- 2022-12-08 Flask框架運用Ajax實現輪詢動態繪圖_python
- 最近更新
-
- window11 系統安裝 yarn
- 超詳細win安裝深度學習環境2025年最新版(
- Linux 中運行的top命令 怎么退出?
- MySQL 中decimal 的用法? 存儲小
- get 、set 、toString 方法的使
- @Resource和 @Autowired注解
- Java基礎操作-- 運算符,流程控制 Flo
- 1. Int 和Integer 的區別,Jav
- spring @retryable不生效的一種
- Spring Security之認證信息的處理
- Spring Security之認證過濾器
- Spring Security概述快速入門
- Spring Security之配置體系
- 【SpringBoot】SpringCache
- Spring Security之基于方法配置權
- redisson分布式鎖中waittime的設
- maven:解決release錯誤:Artif
- restTemplate使用總結
- Spring Security之安全異常處理
- MybatisPlus優雅實現加密?
- Spring ioc容器與Bean的生命周期。
- 【探索SpringCloud】服務發現-Nac
- Spring Security之基于HttpR
- Redis 底層數據結構-簡單動態字符串(SD
- arthas操作spring被代理目標對象命令
- Spring中的單例模式應用詳解
- 聊聊消息隊列,發送消息的4種方式
- bootspring第三方資源配置管理
- GIT同步修改后的遠程分支