網站首頁 編程語言 正文
1.概念
? 布隆過濾器是一個高空間利用率的概率性數據結構,主要目的是節省內存空間以及判斷一個元素是否存在于一個集合中(存在誤判的情況),可以理解為一個不怎么精確的 set 結構,當你使用它的 contains 方法判斷某個對象是否存在時,它可能會誤判。但是布隆過濾器也不是特別不精確,只要參數設置的合理,它的精確度可以控制的相對足夠精確,只會有小小的誤判概率(控制參數:error_rate-誤判率 initial_size-初始容量)
? error_rate越小,越精確,需要的空間越大
? initial_size越大,越精確,當實際數量超出這個數值時,誤判率會上升
布隆過濾器可以判斷某個數據一定不存在,但是無法判斷一定存在
2.guava實現
2.1.依賴
<!--guava實現布隆過濾器--> <dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> <version>19.0</version> </dependency>
2.2.初始化布隆過濾器
//初始化布隆過濾器,放入到spring容器里面
@Bean
public MyBloomFilter<String> initBloomFilterHelper() {
return new MyBloomFilter<>((Funnel<String>) (from, into) -> into.putString(from, Charsets.UTF_8).putString(from, Charsets.UTF_8)
, 1000000, 0.01);
}
2.3.布隆過濾器
package com.qin.redis.bloomfilter;
import com.google.common.base.Preconditions;
import com.google.common.hash.Funnel;
import com.google.common.hash.Hashing;
/**
* @version: V1.0.0
* @className: MyBloomFilter
*/
public class MyBloomFilter<T> {
private int numHashFunctions;
private int bitSize;
private Funnel<T> funnel;
public MyBloomFilter(Funnel<T> funnel, int expectedInsertions, double fpp) {
Preconditions.checkArgument(funnel != null, "funnel不能為空");
this.funnel = funnel;
// 計算bit數組長度
bitSize = optimalNumOfBits(expectedInsertions, fpp);
// 計算hash方法執行次數
numHashFunctions = optimalNumOfHashFunctions(expectedInsertions, bitSize);
}
public int[] murmurHashOffset(T value) {
int[] offset = new int[numHashFunctions];
long hash64 = Hashing.murmur3_128().hashObject(value, funnel).asLong();
int hash1 = (int) hash64;
int hash2 = (int) (hash64 >>> 32);
for (int i = 1; i <= numHashFunctions; i++) {
int nextHash = hash1 + i * hash2;
if (nextHash < 0) {
nextHash = ~nextHash;
}
offset[i - 1] = nextHash % bitSize;
}
return offset;
}
/**
* 計算bit數組長度
*/
private int optimalNumOfBits(long n, double p) {
if (p == 0) {
// 設定最小期望長度
p = Double.MIN_VALUE;
}
int sizeOfBitArray = (int) (-n * Math.log(p) / (Math.log(2) * Math.log(2)));
return sizeOfBitArray;
}
/**
* 計算hash方法執行次數
*/
private static int optimalNumOfHashFunctions(long n, long m) {
int countOfHash = Math.max(1, (int) Math.round((double) m / n * Math.log(2)));
return countOfHash;
}
public static void main(String[] args) {
System.out.println(optimalNumOfHashFunctions(1000000000L, 123450000L));
}
}
2.4.添加元素或者判斷是否存在
package com.qin.redis.bloomfilter.service;
import com.google.common.base.Preconditions;
import com.hikvison.aksk.redis.bloomfilter.MyBloomFilter;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Service;
/**
* @version: V1.0.0
* @className: RedisBloomFilterService
*/
@Service
public class RedisBloomFilterService {
@Autowired
private RedisTemplate redisTemplate;
/**
* 根據給定的布隆過濾器添加值
*/
public <T> void addByBloomFilter(MyBloomFilter<T> bloomFilterHelper, String key, T value) {
Preconditions.checkArgument(bloomFilterHelper != null, "myBloomFilter不能為空");
int[] offset = bloomFilterHelper.murmurHashOffset(value);
for (int i : offset) {
System.out.println("key : " + key + " " + "value : " + i);
redisTemplate.opsForValue().setBit(key, i, true);
}
}
/**
* 根據給定的布隆過濾器判斷值是否存在
*/
public <T> boolean includeByBloomFilter(MyBloomFilter<T> bloomFilterHelper, String key, T value) {
Preconditions.checkArgument(bloomFilterHelper != null, "myBloomFilter不能為空");
int[] offset = bloomFilterHelper.murmurHashOffset(value);
for (int i : offset) {
System.out.println("key : " + key + " " + "value : " + i);
if (!redisTemplate.opsForValue().getBit(key, i)) {
return false;
}
}
return true;
}
}
3.Redisson實現
3.1.依賴
<dependency> <groupId>org.redisson</groupId> <artifactId>redisson</artifactId> <version>2.7.0</version> </dependency>
3.2.注入或測試
//單機模式:可以設置集群、哨兵模式
@Bean
public Redisson redisson() {
Config config = new Config();
config.useSingleServer().setAddress("redis://127.0.0.1:6379");
RedissonClient redissonClient = Redisson.create(config);
//初始化過濾器
RBloomFilter<Object> bloomFilter = redissonClient.getBloomFilter("testBloomFilter");
bloomFilter.tryInit(1000000L,0.05);
//插入元素
bloomFilter.add("zhangsan");
bloomFilter.add("lisi");
//判斷元素是否存在
boolean flag = bloomFilter.contains("lisi");
return (Redisson) redissonClient;
}
原文鏈接:https://blog.csdn.net/qq_42513284/article/details/112252123
相關推薦
- 2022-06-01 Python實現圖像的二進制與base64互轉_python
- 2022-02-15 使用數學軟件Matlab建模畫圖程序匯總_其它綜合
- 2024-01-30 MongoDB 聚合查詢在數據統計中的應用
- 2022-05-10 一起來學習C++中remove與erase的理解_C 語言
- 2022-06-07 Jenkins?腳本命令行應用小結_相關技巧
- 2022-07-14 浮點數乘法和整形乘除法的效率經驗比較_C 語言
- 2022-03-14 flutter 設置Text居左無效(flutter左對齊text無效)
- 2022-09-27 阿里云官方Redis開發規范總結_Redis
- 最近更新
-
- window11 系統安裝 yarn
- 超詳細win安裝深度學習環境2025年最新版(
- Linux 中運行的top命令 怎么退出?
- MySQL 中decimal 的用法? 存儲小
- get 、set 、toString 方法的使
- @Resource和 @Autowired注解
- Java基礎操作-- 運算符,流程控制 Flo
- 1. Int 和Integer 的區別,Jav
- spring @retryable不生效的一種
- Spring Security之認證信息的處理
- Spring Security之認證過濾器
- Spring Security概述快速入門
- Spring Security之配置體系
- 【SpringBoot】SpringCache
- Spring Security之基于方法配置權
- redisson分布式鎖中waittime的設
- maven:解決release錯誤:Artif
- restTemplate使用總結
- Spring Security之安全異常處理
- MybatisPlus優雅實現加密?
- Spring ioc容器與Bean的生命周期。
- 【探索SpringCloud】服務發現-Nac
- Spring Security之基于HttpR
- Redis 底層數據結構-簡單動態字符串(SD
- arthas操作spring被代理目標對象命令
- Spring中的單例模式應用詳解
- 聊聊消息隊列,發送消息的4種方式
- bootspring第三方資源配置管理
- GIT同步修改后的遠程分支