日本免费高清视频-国产福利视频导航-黄色在线播放国产-天天操天天操天天操天天操|www.shdianci.com

學無先后,達者為師

網站首頁 編程語言 正文

解讀MaxPooling1D和GlobalMaxPooling1D的區別_python

作者:zhangztSky ? 更新時間: 2023-01-17 編程語言

MaxPooling1D和GlobalMaxPooling1D區別

import tensorflow as tf

from tensorflow import keras
input_shape = (2, 3, 4)
x = tf.random.normal(input_shape)
print(x)

y=keras.layers.GlobalMaxPool1D()(x)
print("*"*20)

print(y)
'''
  """Global average pooling operation for temporal data.

  Examples:

  >>> input_shape = (2, 3, 4)
  >>> x = tf.random.normal(input_shape)
  >>> y = tf.keras.layers.GlobalAveragePooling1D()(x)
  >>> print(y.shape)
  (2, 4)

  Arguments:
    data_format: A string,
      one of `channels_last` (default) or `channels_first`.
      The ordering of the dimensions in the inputs.
      `channels_last` corresponds to inputs with shape
      `(batch, steps, features)` while `channels_first`
      corresponds to inputs with shape
      `(batch, features, steps)`.

  Call arguments:
    inputs: A 3D tensor.
    mask: Binary tensor of shape `(batch_size, steps)` indicating whether
      a given step should be masked (excluded from the average).

  Input shape:
    - If `data_format='channels_last'`:
      3D tensor with shape:
      `(batch_size, steps, features)`
    - If `data_format='channels_first'`:
      3D tensor with shape:
      `(batch_size, features, steps)`

  Output shape:
    2D tensor with shape `(batch_size, features)`.
  """
'''

print("--"*20)

input_shape = (2, 3, 4)
x = tf.random.normal(input_shape)
print(x)

y=keras.layers.MaxPool1D(pool_size=2,strides=1)(x)  # strides 不指定 默認等于 pool_size
print("*"*20)

print(y)

輸出如下圖

上圖GlobalMaxPool1D 相當于給每一個樣本每列的最大值

而MaxPool1D就是普通的對每一個樣本進行一個窗口(1D是一維列窗口)滑動取最大值。

tf.keras.layers.GlobalMaxPool1D()

與tf.keras.layers.Conv1D的輸入一樣,輸入一個三維數據(batch_size,feature_size,output_dimension)

x = tf.constant([[1., 2., 3.], [4., 5., 6.]])
???????x = tf.reshape(x, [2, 3, 1])
max_pool_1d=tf.keras.layers.GlobalMaxPooling1D()
max_pool_1d(x)

其中max_pool_1d(x)和tf.math.reduce_max(x,axis=-2,keepdims=False)作用相同

總結

原文鏈接:https://blog.csdn.net/qq_38574975/article/details/111468756

欄目分類
最近更新