日本免费高清视频-国产福利视频导航-黄色在线播放国产-天天操天天操天天操天天操|www.shdianci.com

學(xué)無先后,達(dá)者為師

網(wǎng)站首頁 編程語言 正文

Pytorch中torch.flatten()和torch.nn.Flatten()實(shí)例詳解_python

作者:有人比我慢嗎 ? 更新時(shí)間: 2022-04-28 編程語言

?torch.flatten(x)等于torch.flatten(x,0)默認(rèn)將張量拉成一維的向量,也就是說從第一維開始平坦化,torch.flatten(x,1)代表從第二維開始平坦化。

import torch
x=torch.randn(2,4,2)
print(x)
 
z=torch.flatten(x)
print(z)
 
w=torch.flatten(x,1)
print(w)
 
輸出為:
tensor([[[-0.9814,  0.8251],
         [ 0.8197, -1.0426],
         [-0.8185, -1.3367],
         [-0.6293,  0.6714]],
 
        [[-0.5973, -0.0944],
         [ 0.3720,  0.0672],
         [ 0.2681,  1.8025],
         [-0.0606,  0.4855]]])
 
tensor([-0.9814,  0.8251,  0.8197, -1.0426, -0.8185, -1.3367, -0.6293,  0.6714,
        -0.5973, -0.0944,  0.3720,  0.0672,  0.2681,  1.8025, -0.0606,  0.4855])
 
 
tensor([[-0.9814,  0.8251,  0.8197, -1.0426, -0.8185, -1.3367, -0.6293,  0.6714]
,
        [-0.5973, -0.0944,  0.3720,  0.0672,  0.2681,  1.8025, -0.0606,  0.4855]
])

?torch.flatten(x,0,1)代表在第一維和第二維之間平坦化

import torch
x=torch.randn(2,4,2)
print(x)
 
w=torch.flatten(x,0,1) #第一維長度2,第二維長度為4,平坦化后長度為2*4
print(w.shape)
 
print(w)
 
輸出為:
tensor([[[-0.5523, -0.1132],
         [-2.2659, -0.0316],
         [ 0.1372, -0.8486],
         [-0.3593, -0.2622]],
 
        [[-0.9130,  1.0038],
         [-0.3996,  0.4934],
         [ 1.7269,  0.8215],
         [ 0.1207, -0.9590]]])
 
torch.Size([8, 2])
 
tensor([[-0.5523, -0.1132],
        [-2.2659, -0.0316],
        [ 0.1372, -0.8486],
        [-0.3593, -0.2622],
        [-0.9130,  1.0038],
        [-0.3996,  0.4934],
        [ 1.7269,  0.8215],
        [ 0.1207, -0.9590]])

對于torch.nn.Flatten(),因?yàn)槠浔挥迷谏窠?jīng)網(wǎng)絡(luò)中,輸入為一批數(shù)據(jù),第一維為batch,通常要把一個(gè)數(shù)據(jù)拉成一維,而不是將一批數(shù)據(jù)拉為一維。所以torch.nn.Flatten()默認(rèn)從第二維開始平坦化。

import torch
#隨機(jī)32個(gè)通道為1的5*5的圖
x=torch.randn(32,1,5,5)
 
model=torch.nn.Sequential(
    #輸入通道為1,輸出通道為6,3*3的卷積核,步長為1,padding=1
    torch.nn.Conv2d(1,6,3,1,1),
    torch.nn.Flatten()
)
output=model(x)
print(output.shape)  # 6*(7-3+1)*(7-3+1)
 
輸出為:
 
torch.Size([32, 150])

總結(jié)

原文鏈接:https://blog.csdn.net/Super_user_and_woner/article/details/120782656

欄目分類
最近更新