網站首頁 編程語言 正文
scikit-learn庫
scikit-learn已經封裝好很多數據挖掘的算法
現介紹數據挖掘框架的搭建方法
1.轉換器(Transformer)用于數據預處理,數據轉換
2.流水線(Pipeline)組合數據挖掘流程,方便再次使用(封裝)
3.估計器(Estimator)用于分類,聚類,回歸分析(各種算法對象)
所有的估計器都有下面2個函數
fit() 訓練
用法:estimator.fit(X_train, y_train)
estimator = KNeighborsClassifier() 是scikit-learn算法對象
X_train = dataset.data 是numpy數組
y_train = dataset.target 是numpy數組
predict() 預測
用法:estimator.predict(X_test)
estimator = KNeighborsClassifier() 是scikit-learn算法對象
X_test = dataset.data 是numpy數組
示例
%matplotlib inline # Ionosphere數據集 # https://archive.ics.uci.edu/ml/machine-learning-databases/ionosphere/ # 下載ionosphere.data和ionosphere.names文件,放在 ./data/Ionosphere/ 目錄下 import os home_folder = os.path.expanduser("~") print(home_folder) # home目錄 # Change this to the location of your dataset home_folder = "." # 改為當前目錄 data_folder = os.path.join(home_folder, "data") print(data_folder) data_filename = os.path.join(data_folder, "ionosphere.data") print(data_filename) import csv import numpy as np
# Size taken from the dataset and is known已知數據集形狀 X = np.zeros((351, 34), dtype='float') y = np.zeros((351,), dtype='bool') with open(data_filename, 'r') as input_file: reader = csv.reader(input_file) for i, row in enumerate(reader): # Get the data, converting each item to a float data = [float(datum) for datum in row[:-1]] # Set the appropriate row in our dataset用真實數據覆蓋掉初始化的0 X[i] = data # 1 if the class is 'g', 0 otherwise y[i] = row[-1] == 'g' # 相當于if row[-1]=='g': y[i]=1 else: y[i]=0
# 數據預處理 from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=14) print("訓練集數據有 {} 條".format(X_train.shape[0])) print("測試集數據有 {} 條".format(X_test.shape[0])) print("每條數據有 {} 個features".format(X_train.shape[1]))
輸出:
訓練集數據有 263 條
測試集數據有 88 條
每條數據有 34 個features
# 實例化算法對象->訓練->預測->評價 from sklearn.neighbors import KNeighborsClassifier estimator = KNeighborsClassifier() estimator.fit(X_train, y_train) y_predicted = estimator.predict(X_test) accuracy = np.mean(y_test == y_predicted) * 100 print("準確率 {0:.1f}%".format(accuracy)) # 其他評價方式 from sklearn.cross_validation import cross_val_score scores = cross_val_score(estimator, X, y, scoring='accuracy') average_accuracy = np.mean(scores) * 100 print("平均準確率 {0:.1f}%".format(average_accuracy)) avg_scores = [] all_scores = [] parameter_values = list(range(1, 21)) # Including 20 for n_neighbors in parameter_values: estimator = KNeighborsClassifier(n_neighbors=n_neighbors) scores = cross_val_score(estimator, X, y, scoring='accuracy') avg_scores.append(np.mean(scores)) all_scores.append(scores)
輸出:
準確率 86.4%
平均準確率 82.3%
from matplotlib import pyplot as plt plt.figure(figsize=(32,20)) plt.plot(parameter_values, avg_scores, '-o', linewidth=5, markersize=24) #plt.axis([0, max(parameter_values), 0, 1.0])
for parameter, scores in zip(parameter_values, all_scores): n_scores = len(scores) plt.plot([parameter] * n_scores, scores, '-o')
plt.plot(parameter_values, all_scores, 'bx')
from collections import defaultdict all_scores = defaultdict(list) parameter_values = list(range(1, 21)) # Including 20 for n_neighbors in parameter_values: for i in range(100): estimator = KNeighborsClassifier(n_neighbors=n_neighbors) scores = cross_val_score(estimator, X, y, scoring='accuracy', cv=10) all_scores[n_neighbors].append(scores) for parameter in parameter_values: scores = all_scores[parameter] n_scores = len(scores) plt.plot([parameter] * n_scores, scores, '-o')
plt.plot(parameter_values, avg_scores, '-o')
原文鏈接:https://blog.csdn.net/qq_42034590/article/details/129243282
- 上一篇:沒有了
- 下一篇:沒有了
相關推薦
- 2022-04-02 Python操作word文檔的示例詳解_python
- 2022-07-04 Python異步處理返回進度——使用Flask實現進度條_python
- 2022-11-12 python?鏡像環境搭建總結_python
- 2022-03-31 C#實現單位換算器_C#教程
- 2022-03-20 C語言初階之數組詳細介紹_C 語言
- 2022-11-04 C/C++中extern函數使用詳解_C 語言
- 2022-10-28 Go語言包和包管理詳解_Golang
- 2022-06-12 Python數據傳輸黏包問題_python
- 欄目分類
-
- 最近更新
-
- window11 系統安裝 yarn
- 超詳細win安裝深度學習環境2025年最新版(
- Linux 中運行的top命令 怎么退出?
- MySQL 中decimal 的用法? 存儲小
- get 、set 、toString 方法的使
- @Resource和 @Autowired注解
- Java基礎操作-- 運算符,流程控制 Flo
- 1. Int 和Integer 的區別,Jav
- spring @retryable不生效的一種
- Spring Security之認證信息的處理
- Spring Security之認證過濾器
- Spring Security概述快速入門
- Spring Security之配置體系
- 【SpringBoot】SpringCache
- Spring Security之基于方法配置權
- redisson分布式鎖中waittime的設
- maven:解決release錯誤:Artif
- restTemplate使用總結
- Spring Security之安全異常處理
- MybatisPlus優雅實現加密?
- Spring ioc容器與Bean的生命周期。
- 【探索SpringCloud】服務發現-Nac
- Spring Security之基于HttpR
- Redis 底層數據結構-簡單動態字符串(SD
- arthas操作spring被代理目標對象命令
- Spring中的單例模式應用詳解
- 聊聊消息隊列,發送消息的4種方式
- bootspring第三方資源配置管理
- GIT同步修改后的遠程分支