網站首頁 編程語言 正文
介紹
在機器視覺領域的深度學習中,每個數據集都有一份標注好的數據用于訓練神經網絡。
為了節省空間,很多數據集的標注文件使用RLE的格式。
但是神經網絡的輸入一定是一張圖片,為此必須把RLE格式的文件轉變為圖像格式。
圖像格式主要又分為 .jpg 和 .png 兩種格式,其中label數據一定不能使用 .jpg,因為它因為壓縮算算法的原因,會造成圖像失真,圖像各個像素的值可能會發生變化。分割任務的數據集的 label 圖像中每一個像素都代表了該像素點所屬的類別,所以這樣的失真是無法接受的。為此只能使用 .png 格式作為label,pascol voc 和 coco 數據集正是這樣做的。
1.PNG2RLE
PNG格式轉RLE格式
#!---- coding: utf- ---- import numpy as np
def rle_encode(binary_mask):
'''
binary_mask: numpy array, 1 - mask, 0 - background
Returns run length as string formated
'''
pixels = binary_mask.flatten()
pixels = np.concatenate([[0], pixels, [0]])
runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
runs[1::2] -= runs[::2]
return ' '.join(str(x) for x in runs)
2.RLE2PNG
RLE格式轉PNG格式
#!--*-- coding: utf- --*--
import numpy as np
def rle_decode(mask_rle, shape):
'''
mask_rle: run-length as string formated (start length)
shape: (height,width) of array to return
Returns numpy array, 1 - mask, 0 - background
'''
s = mask_rle.split()
starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])]
starts -= 1
ends = starts + lengths
binary_mask = np.zeros(shape[0] * shape[1], dtype=np.uint8)
for lo, hi in zip(starts, ends):
binary_mask[lo:hi] = 1
return binary_mask.reshape(shape)
3.示例
'''
RLE: Run-Length Encode
'''
from PIL import Image
import numpy as np
def __main__():
maskfile = '/path/to/test.png'
mask = np.array(Image.open(maskfile))
binary_mask = mask.copy()
binary_mask[binary_mask <= 127] = 0
binary_mask[binary_mask > 127] = 1
# encode
rle_mask = rle_encode(binary_mask)
# decode
binary_mask_decode = self.rle_decode(rle_mask, binary_mask.shape[:2])
4.完整代碼如下
'''
RLE: Run-Length Encode
'''
#!--*-- coding: utf- --*--
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
# M1:
class general_rle(object):
'''
ref.: https://www.kaggle.com/stainsby/fast-tested-rle
'''
def __init__(self):
pass
def rle_encode(self, binary_mask):
pixels = binary_mask.flatten()
# We avoid issues with '1' at the start or end (at the corners of
# the original image) by setting those pixels to '0' explicitly.
# We do not expect these to be non-zero for an accurate mask,
# so this should not harm the score.
pixels[0] = 0
pixels[-1] = 0
runs = np.where(pixels[1:] != pixels[:-1])[0] + 2
runs[1::2] = runs[1::2] - runs[:-1:2]
return runs
def rle_to_string(self, runs):
return ' '.join(str(x) for x in runs)
def check(self):
test_mask = np.asarray([[0, 0, 0, 0],
[0, 0, 1, 1],
[0, 0, 1, 1],
[0, 0, 0, 0]])
assert rle_to_string(rle_encode(test_mask)) == '7 2 11 2'
# M2:
class binary_mask_rle(object):
'''
ref.: https://www.kaggle.com/paulorzp/run-length-encode-and-decode
'''
def __init__(self):
pass
def rle_encode(self, binary_mask):
'''
binary_mask: numpy array, 1 - mask, 0 - background
Returns run length as string formated
'''
pixels = binary_mask.flatten()
pixels = np.concatenate([[0], pixels, [0]])
runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
runs[1::2] -= runs[::2]
return ' '.join(str(x) for x in runs)
def rle_decode(self, mask_rle, shape):
'''
mask_rle: run-length as string formated (start length)
shape: (height,width) of array to return
Returns numpy array, 1 - mask, 0 - background
'''
s = mask_rle.split()
starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])]
starts -= 1
ends = starts + lengths
binary_mask = np.zeros(shape[0] * shape[1], dtype=np.uint8)
for lo, hi in zip(starts, ends):
binary_mask[lo:hi] = 1
return binary_mask.reshape(shape)
def check(self):
maskfile = '/path/to/test.png'
mask = np.array(Image.open(maskfile))
binary_mask = mask.copy()
binary_mask[binary_mask <= 127] = 0
binary_mask[binary_mask > 127] = 1
# encode
rle_mask = self.rle_encode(binary_mask)
# decode
binary_mask2 = self.rle_decode(rle_mask, binary_mask.shape[:2])
原文鏈接:https://juejin.cn/post/7132869631328403493
相關推薦
- 2023-01-18 GoLang完整實現快速列表_Golang
- 2023-10-10 前端的多種克隆方式和注意事項
- 2022-10-24 C語言進度條的實現原理詳解_C 語言
- 2023-04-06 C語言順序表的基本操作(初始化,插入,刪除,查詢,擴容,打印,清空等)_C 語言
- 2023-03-15 pandas將Series轉成DataFrame的實現_python
- 2022-05-09 Docker?Overlay2磁盤空間占用過大清理的方法實現_docker
- 2022-06-02 Android?實例代碼帶你掌握FrameLayout_Android
- 2023-06-04 Pandas中MultiIndex選擇并提取任何行和列_python
- 最近更新
-
- window11 系統安裝 yarn
- 超詳細win安裝深度學習環境2025年最新版(
- Linux 中運行的top命令 怎么退出?
- MySQL 中decimal 的用法? 存儲小
- get 、set 、toString 方法的使
- @Resource和 @Autowired注解
- Java基礎操作-- 運算符,流程控制 Flo
- 1. Int 和Integer 的區別,Jav
- spring @retryable不生效的一種
- Spring Security之認證信息的處理
- Spring Security之認證過濾器
- Spring Security概述快速入門
- Spring Security之配置體系
- 【SpringBoot】SpringCache
- Spring Security之基于方法配置權
- redisson分布式鎖中waittime的設
- maven:解決release錯誤:Artif
- restTemplate使用總結
- Spring Security之安全異常處理
- MybatisPlus優雅實現加密?
- Spring ioc容器與Bean的生命周期。
- 【探索SpringCloud】服務發現-Nac
- Spring Security之基于HttpR
- Redis 底層數據結構-簡單動態字符串(SD
- arthas操作spring被代理目標對象命令
- Spring中的單例模式應用詳解
- 聊聊消息隊列,發送消息的4種方式
- bootspring第三方資源配置管理
- GIT同步修改后的遠程分支