網(wǎng)站首頁 編程語言 正文
python神經(jīng)網(wǎng)絡(luò)MobileNetV2模型的復(fù)現(xiàn)詳解_python
作者:Bubbliiiing ? 更新時(shí)間: 2022-06-30 編程語言什么是MobileNetV2模型
MobileNet它哥MobileNetV2也是很不錯(cuò)的呢
MobileNet模型是Google針對(duì)手機(jī)等嵌入式設(shè)備提出的一種輕量級(jí)的深層神經(jīng)網(wǎng)絡(luò),其使用的核心思想便是depthwise separable convolution。
MobileNetV2是MobileNet的升級(jí)版,它具有兩個(gè)特征點(diǎn):
1、Inverted residuals,在ResNet50里我們認(rèn)識(shí)到一個(gè)結(jié)構(gòu),bottleneck design結(jié)構(gòu),在3x3網(wǎng)絡(luò)結(jié)構(gòu)前利用1x1卷積降維,在3x3網(wǎng)絡(luò)結(jié)構(gòu)后,利用1x1卷積升維,相比直接使用3x3網(wǎng)絡(luò)卷積效果更好,參數(shù)更少,先進(jìn)行壓縮,再進(jìn)行擴(kuò)張。而在MobileNetV2網(wǎng)絡(luò)部分,其采用Inverted residuals結(jié)構(gòu),在3x3網(wǎng)絡(luò)結(jié)構(gòu)前利用1x1卷積升維,在3x3網(wǎng)絡(luò)結(jié)構(gòu)后,利用1x1卷積降維,先進(jìn)行擴(kuò)張,再進(jìn)行壓縮。
2、Linear bottlenecks,為了避免Relu對(duì)特征的破壞,在在3x3網(wǎng)絡(luò)結(jié)構(gòu)前利用1x1卷積升維,在3x3網(wǎng)絡(luò)結(jié)構(gòu)后,再利用1x1卷積降維后,不再進(jìn)行Relu6層,直接進(jìn)行殘差網(wǎng)絡(luò)的加法。
整體網(wǎng)絡(luò)結(jié)構(gòu)如下:(其中bottleneck進(jìn)行的操作就是上述的創(chuàng)新操作)
MobileNetV2網(wǎng)絡(luò)部分實(shí)現(xiàn)代碼
#-------------------------------------------------------------#
# MobileNetV2的網(wǎng)絡(luò)部分
#-------------------------------------------------------------#
import math
import numpy as np
import tensorflow as tf
from tensorflow.keras import backend
from keras import backend as K
from keras.preprocessing import image
from keras.models import Model
from keras.layers.normalization import BatchNormalization
from keras.layers import Conv2D, Add, ZeroPadding2D, GlobalAveragePooling2D, Dropout, Dense
from keras.layers import MaxPooling2D,Activation,DepthwiseConv2D,Input,GlobalMaxPooling2D
from keras.applications import imagenet_utils
from keras.applications.imagenet_utils import decode_predictions
from keras.utils.data_utils import get_file
# TODO Change path to v1.1
BASE_WEIGHT_PATH = ('https://github.com/JonathanCMitchell/mobilenet_v2_keras/'
'releases/download/v1.1/')
# relu6!
def relu6(x):
return K.relu(x, max_value=6)
# 用于計(jì)算padding的大小
def correct_pad(inputs, kernel_size):
img_dim = 1
input_size = backend.int_shape(inputs)[img_dim:(img_dim + 2)]
if isinstance(kernel_size, int):
kernel_size = (kernel_size, kernel_size)
if input_size[0] is None:
adjust = (1, 1)
else:
adjust = (1 - input_size[0] % 2, 1 - input_size[1] % 2)
correct = (kernel_size[0] // 2, kernel_size[1] // 2)
return ((correct[0] - adjust[0], correct[0]),
(correct[1] - adjust[1], correct[1]))
# 使其結(jié)果可以被8整除,因?yàn)槭褂玫搅伺蛎浵禂?shù)α
def _make_divisible(v, divisor, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
def MobileNetV2(input_shape=[224,224,3],
alpha=1.0,
include_top=True,
weights='imagenet',
classes=1000):
rows = input_shape[0]
img_input = Input(shape=input_shape)
# stem部分
# 224,224,3 -> 112,112,32
first_block_filters = _make_divisible(32 * alpha, 8)
x = ZeroPadding2D(padding=correct_pad(img_input, 3),
name='Conv1_pad')(img_input)
x = Conv2D(first_block_filters,
kernel_size=3,
strides=(2, 2),
padding='valid',
use_bias=False,
name='Conv1')(x)
x = BatchNormalization(epsilon=1e-3,
momentum=0.999,
name='bn_Conv1')(x)
x = Activation(relu6, name='Conv1_relu')(x)
# 112,112,32 -> 112,112,16
x = _inverted_res_block(x, filters=16, alpha=alpha, stride=1,
expansion=1, block_id=0)
# 112,112,16 -> 56,56,24
x = _inverted_res_block(x, filters=24, alpha=alpha, stride=2,
expansion=6, block_id=1)
x = _inverted_res_block(x, filters=24, alpha=alpha, stride=1,
expansion=6, block_id=2)
# 56,56,24 -> 28,28,32
x = _inverted_res_block(x, filters=32, alpha=alpha, stride=2,
expansion=6, block_id=3)
x = _inverted_res_block(x, filters=32, alpha=alpha, stride=1,
expansion=6, block_id=4)
x = _inverted_res_block(x, filters=32, alpha=alpha, stride=1,
expansion=6, block_id=5)
# 28,28,32 -> 14,14,64
x = _inverted_res_block(x, filters=64, alpha=alpha, stride=2,
expansion=6, block_id=6)
x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1,
expansion=6, block_id=7)
x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1,
expansion=6, block_id=8)
x = _inverted_res_block(x, filters=64, alpha=alpha, stride=1,
expansion=6, block_id=9)
# 14,14,64 -> 14,14,96
x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1,
expansion=6, block_id=10)
x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1,
expansion=6, block_id=11)
x = _inverted_res_block(x, filters=96, alpha=alpha, stride=1,
expansion=6, block_id=12)
# 14,14,96 -> 7,7,160
x = _inverted_res_block(x, filters=160, alpha=alpha, stride=2,
expansion=6, block_id=13)
x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1,
expansion=6, block_id=14)
x = _inverted_res_block(x, filters=160, alpha=alpha, stride=1,
expansion=6, block_id=15)
# 7,7,160 -> 7,7,320
x = _inverted_res_block(x, filters=320, alpha=alpha, stride=1,
expansion=6, block_id=16)
if alpha > 1.0:
last_block_filters = _make_divisible(1280 * alpha, 8)
else:
last_block_filters = 1280
# 7,7,320 -> 7,7,1280
x = Conv2D(last_block_filters,
kernel_size=1,
use_bias=False,
name='Conv_1')(x)
x = BatchNormalization(epsilon=1e-3,
momentum=0.999,
name='Conv_1_bn')(x)
x = Activation(relu6, name='out_relu')(x)
x = GlobalAveragePooling2D()(x)
x = Dense(classes, activation='softmax',
use_bias=True, name='Logits')(x)
inputs = img_input
model = Model(inputs, x, name='mobilenetv2_%0.2f_%s' % (alpha, rows))
# Load weights.
if weights == 'imagenet':
if include_top:
model_name = ('mobilenet_v2_weights_tf_dim_ordering_tf_kernels_' +
str(alpha) + '_' + str(rows) + '.h5')
weight_path = BASE_WEIGHT_PATH + model_name
weights_path = get_file(
model_name, weight_path, cache_subdir='models')
else:
model_name = ('mobilenet_v2_weights_tf_dim_ordering_tf_kernels_' +
str(alpha) + '_' + str(rows) + '_no_top' + '.h5')
weight_path = BASE_WEIGHT_PATH + model_name
weights_path = get_file(
model_name, weight_path, cache_subdir='models')
model.load_weights(weights_path)
elif weights is not None:
model.load_weights(weights)
return model
def _inverted_res_block(inputs, expansion, stride, alpha, filters, block_id):
in_channels = backend.int_shape(inputs)[-1]
pointwise_conv_filters = int(filters * alpha)
pointwise_filters = _make_divisible(pointwise_conv_filters, 8)
x = inputs
prefix = 'block_{}_'.format(block_id)
# part1 數(shù)據(jù)擴(kuò)張
if block_id:
# Expand
x = Conv2D(expansion * in_channels,
kernel_size=1,
padding='same',
use_bias=False,
activation=None,
name=prefix + 'expand')(x)
x = BatchNormalization(epsilon=1e-3,
momentum=0.999,
name=prefix + 'expand_BN')(x)
x = Activation(relu6, name=prefix + 'expand_relu')(x)
else:
prefix = 'expanded_conv_'
if stride == 2:
x = ZeroPadding2D(padding=correct_pad(x, 3),
name=prefix + 'pad')(x)
# part2 可分離卷積
x = DepthwiseConv2D(kernel_size=3,
strides=stride,
activation=None,
use_bias=False,
padding='same' if stride == 1 else 'valid',
name=prefix + 'depthwise')(x)
x = BatchNormalization(epsilon=1e-3,
momentum=0.999,
name=prefix + 'depthwise_BN')(x)
x = Activation(relu6, name=prefix + 'depthwise_relu')(x)
# part3壓縮特征,而且不使用relu函數(shù),保證特征不被破壞
x = Conv2D(pointwise_filters,
kernel_size=1,
padding='same',
use_bias=False,
activation=None,
name=prefix + 'project')(x)
x = BatchNormalization(epsilon=1e-3,
momentum=0.999,
name=prefix + 'project_BN')(x)
if in_channels == pointwise_filters and stride == 1:
return Add(name=prefix + 'add')([inputs, x])
return x
圖片預(yù)測
建立網(wǎng)絡(luò)后,可以用以下的代碼進(jìn)行預(yù)測。
def preprocess_input(x):
x /= 255.
x -= 0.5
x *= 2.
return x
if __name__ == '__main__':
model = MobileNetV2(input_shape=(224, 224, 3))
model.summary()
img_path = 'elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
print('Input image shape:', x.shape)
preds = model.predict(x)
print(np.argmax(preds))
print('Predicted:', decode_predictions(preds, 1))
預(yù)測所需的已經(jīng)訓(xùn)練好的MobileNetV2模型會(huì)在運(yùn)行時(shí)自動(dòng)下載,下載后的模型位于C:\Users\Administrator.keras\models文件夾內(nèi)。
可以修改MobileNetV2內(nèi)不同的alpha值實(shí)現(xiàn)不同depth的MobileNetV2模型。可選的alpha值有:
? | Top-1 | Top-5 | 10-5 | Size | Stem |
---|---|---|---|---|---|
MobileNetV2(alpha=0.35) | 39.914 | 17.568 | 15.422 | 1.7M | 0.4M |
MobileNetV2(alpha=0.50) | 34.806 | 13.938 | 11.976 | 2.0M | 0.7M |
MobileNetV2(alpha=0.75) | 30.468 | 10.824 | 9.188 | 2.7M | 1.4M |
MobileNetV2(alpha=1.0) | 28.664 | 9.858 | 8.322 | 3.5M | 2.3M |
MobileNetV2(alpha=1.3) | 25.320 | 7.878 | 6.728 | 5.4M | 3.8M |
原文鏈接:https://blog.csdn.net/weixin_44791964/article/details/102851214
相關(guān)推薦
- 2024-03-01 【websocket】前端websocket 實(shí)時(shí)通信
- 2022-10-03 iOS?Objective-c實(shí)現(xiàn)左右滑動(dòng)切換頁面_IOS
- 2022-05-31 Android實(shí)現(xiàn)文件資源管理器雛形_Android
- 2022-07-11 Python利用xlrd?與?xlwt?模塊操作?Excel_python
- 2024-03-04 layui tree組件實(shí)現(xiàn)搜索節(jié)點(diǎn)并展開
- 2022-07-12 Spring Boot項(xiàng)目下JPA自定義雪花算法ID生成器詳解
- 2022-05-22 部署ASP.NET?Core程序到Linux系統(tǒng)_基礎(chǔ)應(yīng)用
- 2022-12-21 C語言中continue的用法詳解_C 語言
- 最近更新
-
- window11 系統(tǒng)安裝 yarn
- 超詳細(xì)win安裝深度學(xué)習(xí)環(huán)境2025年最新版(
- Linux 中運(yùn)行的top命令 怎么退出?
- MySQL 中decimal 的用法? 存儲(chǔ)小
- get 、set 、toString 方法的使
- @Resource和 @Autowired注解
- Java基礎(chǔ)操作-- 運(yùn)算符,流程控制 Flo
- 1. Int 和Integer 的區(qū)別,Jav
- spring @retryable不生效的一種
- Spring Security之認(rèn)證信息的處理
- Spring Security之認(rèn)證過濾器
- Spring Security概述快速入門
- Spring Security之配置體系
- 【SpringBoot】SpringCache
- Spring Security之基于方法配置權(quán)
- redisson分布式鎖中waittime的設(shè)
- maven:解決release錯(cuò)誤:Artif
- restTemplate使用總結(jié)
- Spring Security之安全異常處理
- MybatisPlus優(yōu)雅實(shí)現(xiàn)加密?
- Spring ioc容器與Bean的生命周期。
- 【探索SpringCloud】服務(wù)發(fā)現(xiàn)-Nac
- Spring Security之基于HttpR
- Redis 底層數(shù)據(jù)結(jié)構(gòu)-簡單動(dòng)態(tài)字符串(SD
- arthas操作spring被代理目標(biāo)對(duì)象命令
- Spring中的單例模式應(yīng)用詳解
- 聊聊消息隊(duì)列,發(fā)送消息的4種方式
- bootspring第三方資源配置管理
- GIT同步修改后的遠(yuǎn)程分支